--- tags: - merge - mergekit - lazymergekit - yam-peleg/Experiment21-7B - CultriX/NeuralTrix-bf16 - louisgrc/Montebello_7B_SLERP - CorticalStack/pastiche-crown-clown-7b-dare-dpo - chihoonlee10/T3Q-Mistral-Orca-Math-DPO base_model: - yam-peleg/Experiment21-7B - CultriX/NeuralTrix-bf16 - louisgrc/Montebello_7B_SLERP - CorticalStack/pastiche-crown-clown-7b-dare-dpo - chihoonlee10/T3Q-Mistral-Orca-Math-DPO --- # Neural-4-QA-7b Neural-4-QA-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [yam-peleg/Experiment21-7B](https://huggingface.co/yam-peleg/Experiment21-7B) * [CultriX/NeuralTrix-bf16](https://huggingface.co/CultriX/NeuralTrix-bf16) * [louisgrc/Montebello_7B_SLERP](https://huggingface.co/louisgrc/Montebello_7B_SLERP) * [CorticalStack/pastiche-crown-clown-7b-dare-dpo](https://huggingface.co/CorticalStack/pastiche-crown-clown-7b-dare-dpo) * [chihoonlee10/T3Q-Mistral-Orca-Math-DPO](https://huggingface.co/chihoonlee10/T3Q-Mistral-Orca-Math-DPO) ## 🧩 Configuration ```yaml models: - model: chihoonlee10/T3Q-Mistral-Orca-Math-DPO # No parameters necessary for base model - model: yam-peleg/Experiment21-7B parameters: density: 0.66 weight: 0.2 - model: CultriX/NeuralTrix-bf16 parameters: density: 0.55 weight: 0.2 - model: louisgrc/Montebello_7B_SLERP parameters: density: 0.55 weight: 0.2 - model: CorticalStack/pastiche-crown-clown-7b-dare-dpo parameters: density: 0.44 weight: 0.2 - model: chihoonlee10/T3Q-Mistral-Orca-Math-DPO parameters: density: 0.66 weight: 0.2 merge_method: dare_ties base_model: chihoonlee10/T3Q-Mistral-Orca-Math-DPO parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/Neural-4-QA-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```