File size: 1,744 Bytes
aee73da
 
 
 
 
 
 
 
 
 
16e76c8
aee73da
 
 
 
131374e
 
 
aee73da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
tags:
- merge
- mergekit
- lazymergekit
- Kukedlc/SomeModelsMerge-7b
- Kukedlc/MyModelsMerge-7b
base_model:
- Kukedlc/SomeModelsMerge-7b
- Kukedlc/MyModelsMerge-7b
license: apache-2.0
---

# NeuralGanesha-7b


![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/ta2vBMskD23yihQnu4aXo.png)

NeuralGanesha-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Kukedlc/SomeModelsMerge-7b](https://huggingface.co/Kukedlc/SomeModelsMerge-7b)
* [Kukedlc/MyModelsMerge-7b](https://huggingface.co/Kukedlc/MyModelsMerge-7b)

## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: Kukedlc/SomeModelsMerge-7b
        layer_range: [0, 32]
      - model: Kukedlc/MyModelsMerge-7b
        layer_range: [0, 32]
merge_method: slerp
base_model: Kukedlc/SomeModelsMerge-7b
parameters:
  t:
    - filter: self_attn
      value: [0.1, 0.6, 0.3, 0.7, 1]
    - filter: mlp
      value: [0.9, 0.4, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Kukedlc/NeuralGanesha-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```