--- tags: - merge - mergekit - lazymergekit - mlabonne/ChimeraLlama-3-8B-v2 - nbeerbower/llama-3-stella-8B - uygarkurt/llama-3-merged-linear base_model: - mlabonne/ChimeraLlama-3-8B-v2 - nbeerbower/llama-3-stella-8B - uygarkurt/llama-3-merged-linear --- # NeuralLLaMa-3-8b-DT-v0.1 NeuralLLaMa-3-8b-DT-v0.1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/ChimeraLlama-3-8B-v2](https://huggingface.co/mlabonne/ChimeraLlama-3-8B-v2) * [nbeerbower/llama-3-stella-8B](https://huggingface.co/nbeerbower/llama-3-stella-8B) * [uygarkurt/llama-3-merged-linear](https://huggingface.co/uygarkurt/llama-3-merged-linear) ## 🧩 Configuration ```yaml models: - model: NousResearch/Meta-Llama-3-8B # No parameters necessary for base model - model: mlabonne/ChimeraLlama-3-8B-v2 parameters: density: 0.33 weight: 0.2 - model: nbeerbower/llama-3-stella-8B parameters: density: 0.44 weight: 0.4 - model: uygarkurt/llama-3-merged-linear parameters: density: 0.55 weight: 0.4 merge_method: dare_ties base_model: NousResearch/Meta-Llama-3-8B parameters: int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/NeuralLLaMa-3-8b-DT-v0.1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```