--- base_model: - Qwen/Qwen2.5-1.5B-Instruct - Kukedlc/Qwen2.5-1.5B-Spanish-1.0-DPO tags: - merge - mergekit - lazymergekit - Qwen/Qwen2.5-1.5B-Instruct - Kukedlc/Qwen2.5-1.5B-Spanish-1.0-DPO --- # NeuralQwen-2.5-1.5B-Spanish ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/Tu9FV0dQJXz-mlriKNqdE.png) NeuralQwen-2.5-1.5B-Spanish is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) * [Kukedlc/Qwen2.5-1.5B-Spanish-1.0-DPO](https://huggingface.co/Kukedlc/Qwen2.5-1.5B-Spanish-1.0-DPO) ## 🧩 Configuration ```yaml models: - model: Qwen/Qwen2.5-1.5B # No parameters necessary for base model - model: Qwen/Qwen2.5-1.5B-Instruct parameters: density: 0.66 weight: 0.6 - model: Kukedlc/Qwen2.5-1.5B-Spanish-1.0-DPO parameters: density: 0.44 weight: 0.4 merge_method: dare_ties base_model: Qwen/Qwen2.5-1.5B parameters: int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/NeuralQwen-2.5-1.5B-Spanish" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```