--- tags: - merge - mergekit - lazymergekit - NousResearch/Hermes-2-Pro-Mistral-7B - mlabonne/AlphaMonarch-7B - Weyaxi/Einstein-v4-7B base_model: - NousResearch/Hermes-2-Pro-Mistral-7B - mlabonne/AlphaMonarch-7B - Weyaxi/Einstein-v4-7B license: apache-2.0 --- # SuperMente-7B-v2 This model is the smartest in the SuperMente series. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/3yfJJCWJpwGcgiNIdCa04.png) SuperMente-7B-v2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) * [Weyaxi/Einstein-v4-7B](https://huggingface.co/Weyaxi/Einstein-v4-7B) ## 🧩 Configuration ```yaml models: - model: NousResearch/Hermes-2-Pro-Mistral-7B parameters: density: [1, 0.7, 0.1] # density gradient weight: 1.0 - model: mlabonne/AlphaMonarch-7B parameters: density: 0.5 weight: [0, 0.3, 0.7, 1] # weight gradient - model: Weyaxi/Einstein-v4-7B parameters: density: 0.33 weight: - filter: mlp value: 0.5 - value: 0 merge_method: ties base_model: mlabonne/AlphaMonarch-7B parameters: normalize: true int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/SuperMente-7B-v2" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```