update model card README.md
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss:
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -52,7 +52,7 @@ More information needed
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
-
- learning_rate:
|
56 |
- train_batch_size: 32
|
57 |
- eval_batch_size: 32
|
58 |
- seed: 42
|
@@ -61,22 +61,32 @@ The following hyperparameters were used during training:
|
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
-
- num_epochs:
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
| 1.
|
73 |
-
| 1.
|
74 |
-
| 1.
|
75 |
-
| 1.
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.81
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.7392
|
36 |
+
- Accuracy: 0.81
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
- train_batch_size: 32
|
57 |
- eval_batch_size: 32
|
58 |
- seed: 42
|
|
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 20
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 1.3055 | 0.97 | 7 | 1.2863 | 0.73 |
|
71 |
+
| 1.2903 | 1.93 | 14 | 1.2504 | 0.7 |
|
72 |
+
| 1.2118 | 2.9 | 21 | 1.1450 | 0.77 |
|
73 |
+
| 1.1443 | 4.0 | 29 | 1.1224 | 0.74 |
|
74 |
+
| 1.006 | 4.97 | 36 | 1.0376 | 0.79 |
|
75 |
+
| 1.0174 | 5.93 | 43 | 0.9681 | 0.8 |
|
76 |
+
| 0.9155 | 6.9 | 50 | 0.9322 | 0.81 |
|
77 |
+
| 0.8781 | 8.0 | 58 | 0.9266 | 0.78 |
|
78 |
+
| 0.819 | 8.97 | 65 | 0.8473 | 0.79 |
|
79 |
+
| 0.7984 | 9.93 | 72 | 0.8225 | 0.77 |
|
80 |
+
| 0.7254 | 10.9 | 79 | 0.8096 | 0.81 |
|
81 |
+
| 0.6752 | 12.0 | 87 | 0.7801 | 0.81 |
|
82 |
+
| 0.6132 | 12.97 | 94 | 0.7687 | 0.8 |
|
83 |
+
| 0.615 | 13.93 | 101 | 0.7603 | 0.79 |
|
84 |
+
| 0.6162 | 14.9 | 108 | 0.7599 | 0.82 |
|
85 |
+
| 0.5678 | 16.0 | 116 | 0.7414 | 0.81 |
|
86 |
+
| 0.548 | 16.97 | 123 | 0.7423 | 0.81 |
|
87 |
+
| 0.5495 | 17.93 | 130 | 0.7378 | 0.81 |
|
88 |
+
| 0.5185 | 18.9 | 137 | 0.7396 | 0.81 |
|
89 |
+
| 0.5544 | 19.31 | 140 | 0.7392 | 0.81 |
|
90 |
|
91 |
|
92 |
### Framework versions
|