File size: 3,156 Bytes
10db53c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca8aca9
10db53c
 
ca8aca9
10db53c
 
ca8aca9
10db53c
 
ca8aca9
10db53c
 
 
 
 
 
 
 
 
ca8aca9
 
 
 
 
10db53c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca8aca9
 
 
 
 
 
 
 
 
 
10db53c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
license: apache-2.0
base_model: microsoft/swinv2-base-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- recall
- f1
- precision
model-index:
- name: swinv2-base-patch4-window8-256-finetuned-ind-17-imbalanced-aadhaarmask
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8463175819497658
    - name: Recall
      type: recall
      value: 0.8463175819497658
    - name: F1
      type: f1
      value: 0.8463640211224454
    - name: Precision
      type: precision
      value: 0.8481964005333177
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swinv2-base-patch4-window8-256-finetuned-ind-17-imbalanced-aadhaarmask

This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window8-256](https://huggingface.co/microsoft/swinv2-base-patch4-window8-256) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3463
- Accuracy: 0.8463
- Recall: 0.8463
- F1: 0.8464
- Precision: 0.8482

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Recall | F1     | Precision |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| No log        | 0.9974 | 293  | 0.6222          | 0.7901   | 0.7901 | 0.7737 | 0.7747    |
| No log        | 1.9983 | 587  | 0.4901          | 0.8063   | 0.8063 | 0.7998 | 0.8066    |
| No log        | 2.9991 | 881  | 0.4374          | 0.8225   | 0.8225 | 0.8170 | 0.8356    |
| No log        | 4.0    | 1175 | 0.4262          | 0.8340   | 0.8340 | 0.8270 | 0.8541    |
| No log        | 4.9974 | 1468 | 0.4079          | 0.8310   | 0.8310 | 0.8290 | 0.8379    |
| No log        | 5.9983 | 1762 | 0.4117          | 0.8370   | 0.8370 | 0.8361 | 0.8509    |
| No log        | 6.9991 | 2056 | 0.3807          | 0.8370   | 0.8370 | 0.8361 | 0.8416    |
| No log        | 8.0    | 2350 | 0.3419          | 0.8595   | 0.8595 | 0.8583 | 0.8609    |
| No log        | 8.9974 | 2643 | 0.3628          | 0.8438   | 0.8438 | 0.8424 | 0.8448    |
| 0.4492        | 9.9745 | 2930 | 0.3638          | 0.8399   | 0.8399 | 0.8394 | 0.8410    |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.0a0+81ea7a4
- Datasets 2.19.0
- Tokenizers 0.19.1