File size: 3,156 Bytes
10db53c ca8aca9 10db53c ca8aca9 10db53c ca8aca9 10db53c ca8aca9 10db53c ca8aca9 10db53c ca8aca9 10db53c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
license: apache-2.0
base_model: microsoft/swinv2-base-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- recall
- f1
- precision
model-index:
- name: swinv2-base-patch4-window8-256-finetuned-ind-17-imbalanced-aadhaarmask
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8463175819497658
- name: Recall
type: recall
value: 0.8463175819497658
- name: F1
type: f1
value: 0.8463640211224454
- name: Precision
type: precision
value: 0.8481964005333177
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swinv2-base-patch4-window8-256-finetuned-ind-17-imbalanced-aadhaarmask
This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window8-256](https://huggingface.co/microsoft/swinv2-base-patch4-window8-256) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3463
- Accuracy: 0.8463
- Recall: 0.8463
- F1: 0.8464
- Precision: 0.8482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| No log | 0.9974 | 293 | 0.6222 | 0.7901 | 0.7901 | 0.7737 | 0.7747 |
| No log | 1.9983 | 587 | 0.4901 | 0.8063 | 0.8063 | 0.7998 | 0.8066 |
| No log | 2.9991 | 881 | 0.4374 | 0.8225 | 0.8225 | 0.8170 | 0.8356 |
| No log | 4.0 | 1175 | 0.4262 | 0.8340 | 0.8340 | 0.8270 | 0.8541 |
| No log | 4.9974 | 1468 | 0.4079 | 0.8310 | 0.8310 | 0.8290 | 0.8379 |
| No log | 5.9983 | 1762 | 0.4117 | 0.8370 | 0.8370 | 0.8361 | 0.8509 |
| No log | 6.9991 | 2056 | 0.3807 | 0.8370 | 0.8370 | 0.8361 | 0.8416 |
| No log | 8.0 | 2350 | 0.3419 | 0.8595 | 0.8595 | 0.8583 | 0.8609 |
| No log | 8.9974 | 2643 | 0.3628 | 0.8438 | 0.8438 | 0.8424 | 0.8448 |
| 0.4492 | 9.9745 | 2930 | 0.3638 | 0.8399 | 0.8399 | 0.8394 | 0.8410 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.0a0+81ea7a4
- Datasets 2.19.0
- Tokenizers 0.19.1
|