File size: 7,524 Bytes
1d78b68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors, The HuggingFace Inc. team and Gyeongmin Kim
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers.models.xlm_roberta.tokenization_xlm_roberta import XLMRobertaTokenizer
SPIECE_UNDERLINE = "▁"
VOCAB_FILES_NAMES = {"spm_model": "spm.model", "custom_vocab_file": "dict.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"spm_model": {
"fairseq-roberta-spm-normal": "fairseq-roberta-all-model/spm.model",
},
"custom_vocab_file": {
"fairseq-roberta-spm-normal": "fairseq-roberta-all-model/dict.txt",
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"fairseq-roberta-spm-normal": 512,
}
class FairSeqRobertaSentencePieceTokenizer(XLMRobertaTokenizer):
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(
self,
spm_model,
custom_vocab_file,
bos_token="[CLS]",
eos_token="[SEP]",
sep_token="[SEP]",
cls_token="[CLS]",
unk_token="[UNK]",
pad_token="[PAD]",
mask_token="[MASK]",
**kwargs
):
super().__init__(
vocab_file=spm_model,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
**kwargs,
)
# FairSeq dictioanry: <s>, <pad>, </s>, <unk>, token1, token2, ..., tokenN, <mask>
self.symbols = []
self.count = []
self.spm_id_to_fairseq_id = {}
self._add_symbol(self.sp_model.PieceToId(bos_token))
self._add_symbol(self.sp_model.PieceToId(pad_token))
self._add_symbol(self.sp_model.PieceToId(eos_token))
self._add_symbol(self.sp_model.PieceToId(unk_token))
self._add_from_file(custom_vocab_file)
self._add_symbol(self.sp_model.PieceToId(mask_token))
self.fairseq_tokens_to_ids = {}
self.fairseq_tokens_to_ids = self._build_fairseq_tokens_to_ids()
# self.spm_id_to_fairseq_id(bridge vocab)을 이용해서 real token -> fairseq id로 연결해주는 vocabulary
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
# Collect some stats like OOV rate.
self._num_tokens_converted = 0
self._num_tokens_oov = 0
@property
def vocab_size(self):
return len(self.symbols)
@property
def pad_token_id(self):
return self.fairseq_tokens_to_ids.get(self.pad_token)
@property
def unk_token_id(self):
return self.fairseq_tokens_to_ids.get(self.unk_token)
def reset_stats(self):
self._num_tokens_converted = 0
self._num_tokens_oov = 0
def get_stats(self):
oov_rate = self._num_tokens_oov / self._num_tokens_converted
result = {
"total": self._num_tokens_converted,
"oov": self._num_tokens_oov,
"oov_rate": oov_rate
}
return result
def _convert_token_to_id(self, token):
""" Converts a token (str) in an id using the vocab. """
self._num_tokens_converted += 1
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
self._num_tokens_oov += 1
return self.unk_token_id
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
else:
return self.unk_token
def _add_from_file(self, f):
"""
Source: FairSeq Dictionary class.
Loads a pre-existing dictionary from a text file and adds its symbols
to this instance.
"""
if isinstance(f, str):
try:
with open(f, "r", encoding="utf-8") as fd:
self._add_from_file(fd)
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(
"Incorrect encoding detected in {}, please "
"rebuild the dataset".format(f)
)
return
lines = f.readlines()
indices_start_line = 0
for line in lines[indices_start_line:]:
try:
line, field = line.rstrip().rsplit(" ", 1)
if field == "#fairseq:overwrite":
overwrite = True
line, field = line.rsplit(" ", 1)
else:
overwrite = False
count = int(field)
spm_id = line
if spm_id in self.spm_id_to_fairseq_id and not overwrite:
raise RuntimeError(
"Duplicate word found when loading Dictionary: '{}'. "
"Duplicate words can overwrite earlier ones by adding the "
"#fairseq:overwrite flag at the end of the corresponding row "
"in the dictionary file. If using the Camembert model, please "
"download an updated copy of the model file."
.format(spm_id)
)
self._add_symbol(spm_id, n=count, overwrite=overwrite)
except ValueError:
raise ValueError(
"Incorrect dictionary format, expected '<token> <cnt> [flags]'"
)
def _add_symbol(self, spm_id, n=1, overwrite=False):
"""
Source: FairSeq Dictionary class.
Adds a word to the dictionary
"""
if spm_id in self.spm_id_to_fairseq_id and not overwrite:
idx = self.spm_id_to_fairseq_id[spm_id]
self.count[idx] = self.count[idx] + n
return idx
else:
idx = len(self.symbols)
self.spm_id_to_fairseq_id[spm_id] = idx
self.symbols.append(spm_id)
self.count.append(n)
return idx
def _build_fairseq_tokens_to_ids(self):
# self.spm_id_to_fairseq_id(bridge vocab)을 이용해서 real token -> fairseq id로 연결해주는 vocabulary 빌드
fairseq_tokens_to_ids = self.fairseq_tokens_to_ids
for spm_id, fairseq_id in self.spm_id_to_fairseq_id.items():
if isinstance(spm_id, str) and "madeup" in spm_id:
print("[PASS] spm_id: {} | fairseq_id: {}".format(spm_id, fairseq_id))
continue
token = self.sp_model.IdToPiece(int(spm_id))
# print("token: {} | spm_id: {} | fairseq_id: {}".format(token, spm_id, fairseq_id))
fairseq_tokens_to_ids[str(token)] = fairseq_id
return fairseq_tokens_to_ids
|