--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-invoice results: [] --- # layoutlmv3-finetuned-invoice This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8510 - Precision: 0.9058 - Recall: 0.9175 - F1: 0.9116 - Accuracy: 0.8556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.3333 | 100 | 0.6411 | 0.7779 | 0.8316 | 0.8038 | 0.7951 | | No log | 2.6667 | 200 | 0.5235 | 0.8209 | 0.8629 | 0.8414 | 0.8238 | | No log | 4.0 | 300 | 0.5130 | 0.8738 | 0.9081 | 0.8906 | 0.8504 | | No log | 5.3333 | 400 | 0.5742 | 0.8848 | 0.9081 | 0.8963 | 0.8431 | | 0.5233 | 6.6667 | 500 | 0.6276 | 0.8610 | 0.8927 | 0.8766 | 0.8374 | | 0.5233 | 8.0 | 600 | 0.6887 | 0.8818 | 0.9041 | 0.8928 | 0.8357 | | 0.5233 | 9.3333 | 700 | 0.6323 | 0.8930 | 0.9165 | 0.9046 | 0.8628 | | 0.5233 | 10.6667 | 800 | 0.6644 | 0.8878 | 0.9195 | 0.9034 | 0.8538 | | 0.5233 | 12.0 | 900 | 0.7365 | 0.9138 | 0.9210 | 0.9174 | 0.8580 | | 0.1181 | 13.3333 | 1000 | 0.7774 | 0.8939 | 0.9210 | 0.9073 | 0.8549 | | 0.1181 | 14.6667 | 1100 | 0.8265 | 0.9090 | 0.9175 | 0.9132 | 0.8557 | | 0.1181 | 16.0 | 1200 | 0.8112 | 0.9023 | 0.9265 | 0.9142 | 0.8546 | | 0.1181 | 17.3333 | 1300 | 0.8212 | 0.9075 | 0.9160 | 0.9117 | 0.8596 | | 0.1181 | 18.6667 | 1400 | 0.8931 | 0.8999 | 0.9151 | 0.9074 | 0.8509 | | 0.0443 | 20.0 | 1500 | 0.8510 | 0.9058 | 0.9175 | 0.9116 | 0.8556 | | 0.0443 | 21.3333 | 1600 | 0.8318 | 0.9016 | 0.9235 | 0.9124 | 0.8612 | | 0.0443 | 22.6667 | 1700 | 0.8783 | 0.9065 | 0.9146 | 0.9105 | 0.8519 | | 0.0443 | 24.0 | 1800 | 0.8964 | 0.9023 | 0.9126 | 0.9074 | 0.8527 | | 0.0443 | 25.3333 | 1900 | 0.8890 | 0.9054 | 0.9175 | 0.9114 | 0.8580 | | 0.0205 | 26.6667 | 2000 | 0.8992 | 0.9004 | 0.9165 | 0.9084 | 0.8552 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.20.1