--- license: mit datasets: - Abirate/english_quotes - JeanKaddour/minipile - EleutherAI/wikitext_document_level - marksverdhei/wordnet-definitions-en-2021 language: - en metrics: - cer base_model: - ai21labs/AI21-Jamba-1.5-Mini --- Trained on 554m tokens, 1 epoch, lr .00987 brown corpus quotes (wikiquote, azquote, gracious quotes, english quotes) idioms (scraped) defitions (wordnet) wiki_text mini pile Trained on runpod for 5 days using 3090 code: https://gist.github.com/thistleknot/368ab298edf596ef50d2cfdcbec66fd1 ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification # Specify the path to the directory where the model is stored #model_dir = r"C:\Users\User\Documents\wiki\wiki\data science\nlp\research\mamba_brown_trained_556m\mamba_brown_trained\mamba_brown_trained" model_dir = "/home/user/mamba_brown_trained" # Load the tokenizer from the local directory # Load the tokenizer and model (use a causal language model for text generation) tokenizer = AutoTokenizer.from_pretrained(model_dir) model = AutoModelForCausalLM.from_pretrained(model_dir) model.to('cuda') # Now, you can use the model and tokenizer for inference input_text = "Once upon a time" # Tokenize the input inputs = tokenizer(input_text, return_tensors="pt").to('cuda') # Generate output tokens using the model output_ids = model.generate(**inputs, max_length=50) # Decode the generated token IDs back into text decoded_output = tokenizer.decode(output_ids[0], skip_special_tokens=True) # Print the generated output text print(decoded_output) ``` Once upon a time, the world is changing. ``` # Now, you can use the model and tokenizer for inference input_text = "The Fulton County Grand Fair was set for Friday at" inputs = tokenizer(input_text, return_tensors="pt").to('cuda') # Generate output tokens using the model with repetition controls output_ids = model.generate( **inputs, max_length=256, # Max tokens to generate repetition_penalty=1.2, # Penalize repeated words no_repeat_ngram_size=3, # Prevent 3-gram repetitions temperature=0.9, # Adjust randomness (lower means more deterministic) top_k=50, # Only sample from top 50 tokens top_p=0.9 # Use nucleus sampling to control diversity ) # Decode the generated token IDs back into text decoded_output = tokenizer.decode(output_ids[0], skip_special_tokens=True) # Print the generated output text print(decoded_output) ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62578ad28c6638f8a93e8856/dpDosrj8gUt2puqx5TLt_.png)