File size: 14,770 Bytes
28e3c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a750ccccd30>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7a750ccc57c0>"
    },
    "verbose": 1,
    "policy_kwargs": {
        ":type:": "<class 'dict'>",
        ":serialized:": "gAWVlAAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKEtAS0BljA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
        "net_arch": [
            64,
            64
        ],
        "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
        "optimizer_kwargs": {
            "alpha": 0.99,
            "eps": 1e-05,
            "weight_decay": 0
        }
    },
    "num_timesteps": 20224,
    "_total_timesteps": 20000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1695743581709051576,
    "learning_rate": 0.001,
    "tensorboard_log": null,
    "_last_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAO1BMPqK4DLxXlN8+XkTevWz3b787LxK+5wEgvvRj/D/2ZBLAkGaRP56Xdj/N1Ew/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOTCZP2+un79jTwg/5EZsvmZMkL9Vk5s90TKcP4zZwj8ZGbK/iYd8P+O8GT+SP9++lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA7UEw+orgMvFeU3z4kt9o+B1Viu9ONtz5eRN69bPdvvzsvEr5heWS/5rhkvMpnfr/nASC+9GP8P/ZkEsCF08y/woWrP1EIrr6QZpE/npd2P83UTD+jDZk/rwaLPyhEPb+UaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 0.1995248  -0.00858894  0.43667862]\n [-0.10852884 -0.9373691  -0.1427583 ]\n [-0.15625726  1.9718003  -2.2874122 ]\n [ 1.1359425   0.963251    0.8001221 ]]",
        "desired_goal": "[[ 1.1967841  -1.2475108   0.53246135]\n [-0.23073918 -1.1273315   0.07596461]\n [ 1.2203008   1.522264   -1.3913909 ]\n [ 0.9864431   0.60053843 -0.43603188]]",
        "observation": "[[ 0.1995248  -0.00858894  0.43667862  0.4271785  -0.00345355  0.3585039 ]\n [-0.10852884 -0.9373691  -0.1427583  -0.8924771  -0.0139601  -0.9937712 ]\n [-0.15625726  1.9718003  -2.2874122  -1.6002051   1.3400195  -0.3399072 ]\n [ 1.1359425   0.963251    0.8001221   1.1957287   1.0861415  -0.73932123]]"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABAC/PfJxnDxZyPg9jT3+vYRKFj2mQqc9MIedPYco1T1VyQ8+ra8LPci7aL0hd40+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]",
        "desired_goal": "[[ 0.09326175  0.0190973   0.12147588]\n [-0.12414084  0.03669216  0.08167009]\n [ 0.07691801  0.10408121  0.14041646]\n [ 0.03410308 -0.05681971  0.2762995 ]]",
        "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"
    },
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.011200000000000099,
    "_stats_window_size": 100,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7/atcOby6OMAWyUSwKMAXSUR0CwQdA1zhgmdX2UKGgGR7/ihXS0BwMqaAdLB2gIR0CwQZPStvGZdX2UKGgGR7/lbdJrcj7iaAdLB2gIR0CwQXn6dlNDdX2UKGgGR7/YddE9dNWVaAdLBGgIR0CwQZzIBBAwdX2UKGgGR7++FAVwgkkbaAdLAmgIR0CwQaHDvVmSdX2UKGgGR7/avMKTjebeaAdLBGgIR0CwQYOdkJ8fdX2UKGgGR7/rN1hb4agmaAdLCmgIR0CwQec2zfJndX2UKGgGR7/gra24NI9UaAdLBmgIR0CwQa7mp2lmdX2UKGgGR7/kCjL0SRKZaAdLBWgIR0CwQbkvf0mMdX2UKGgGR7/yDXWe6I3zaAdLCmgIR0CwQZjlkpZwdX2UKGgGR7/vNoakyk9EaAdLCmgIR0CwQfxYigTRdX2UKGgGR7+6IcinpB5YaAdLAmgIR0CwQb3fMwDedX2UKGgGR7/sxoAXEZR9aAdLCmgIR0CwQa+BQN1AdX2UKGgGR7/wntnf2saLaAdLCWgIR0CwQdJ9uxbCdX2UKGgGR8ATp+gDifg8aAdLMmgIR0CwQfR8+iaidX2UKGgGR7+jCcf/3nIRaAdLAWgIR0CwQdVBUrCndX2UKGgGR7/XCNjslb/waAdLBGgIR0CwQbnhCMP0dX2UKGgGR7/93SF49ovjaAdLEmgIR0CwQidnoPkJdX2UKGgGR7/lw6hg3LmqaAdLCGgIR0CwQejUExIrdX2UKGgGR7/kI3R5TqB3aAdLCGgIR0CwQczvVmSRdX2UKGgGR7/pQhOgxrSFaAdLCWgIR0CwQjtPLxI8dX2UKGgGR7/rsNlRP421aAdLC2gIR0CwQeVqN6w/dX2UKGgGR7/08aXKKYReaAdLDmgIR0CwQghAKOT8dX2UKGgGR7/nz/IbOu7paAdLCGgIR0CwQk3hGYrsdX2UKGgGR7/pAgxJul41aAdLCGgIR0CwQhn/Pw/gdX2UKGgGR7/2Xk92X9iuaAdLDGgIR0CwQjWUGFBZdX2UKGgGR8AQ0Iu5BkZraAdLLmgIR0CwQl4bKifydX2UKGgGR8ACNovi97F9aAdLF2gIR0CwQoIp2ECedX2UKGgGR7/dWk8A7xNJaAdLBWgIR0CwQmms7uD0dX2UKGgGR7/isaCL/CIlaAdLBmgIR0CwQo91EE1VdX2UKGgGR7/4zfR/mT1TaAdLDmgIR0CwQlUx20RfdX2UKGgGR8AKEolUp/gBaAdLJ2gIR0CwQj36qKgqdX2UKGgGR7/oblijL0SRaAdLCGgIR0CwQqHvlU6xdX2UKGgGR7/XU9pyp71JaAdLBmgIR0CwQmNMXaakdX2UKGgGR7/2cIeHSF4+aAdLEGgIR0CwQpARwqAjdX2UKGgGR7/kMHB1s+FDaAdLBmgIR0CwQnLT6SDAdX2UKGgGR7/GkbgjyFwlaAdLA2gIR0CwQpZ6IFeOdX2UKGgGR7/wAqEvkBCEaAdLC2gIR0CwQrzHKfWddX2UKGgGR7/xmFFlTWGzaAdLDWgIR0CwQl3WFvhqdX2UKGgGR7/vWM85jpcHaAdLCmgIR0CwQoqqOtGNdX2UKGgGR7/5dlEqlP8AaAdLDGgIR0CwQrNz4k/sdX2UKGgGR7/0KPOpsGgSaAdLDGgIR0CwQtl6qsEJdX2UKGgGR7/dzgMtsenyaAdLBmgIR0CwQubGBFuvdX2UKGgGR7/4qynk1dgOaAdLDmgIR0CwQqoyGi5/dX2UKGgGR7/pmoaUA1ejaAdLCGgIR0CwQr06kqMFdX2UKGgGR8ADnX7Lt/nXaAdLFWgIR0CwQuNcv/R3dX2UKGgGR7/289W6shgWaAdLEGgIR0CwQwwW3z+WdX2UKGgGR7/jOu7pV0cPaAdLB2gIR0CwQs1p0wJxdX2UKGgGR7/r9AgPmPo3aAdLCWgIR0CwQvePmxMWdX2UKGgGR7/p44yXUpd9aAdLCGgIR0CwQt633HrAdX2UKGgGR8ARvufEn9ehaAdLKmgIR0CwQr5H3DekdX2UKGgGR7/RC2tuDSPVaAdLBGgIR0CwQwBDLKV6dX2UKGgGR7+3a/RE4NqhaAdLAmgIR0CwQwWkvboKdX2UKGgGR7/OBo24uscRaAdLA2gIR0CwQuZR4yGjdX2UKGgGR7/OgFHJ9y93aAdLA2gIR0CwQwutW+49dX2UKGgGR7/i2fTTfBN3aAdLB2gIR0CwQs6CpWFOdX2UKGgGR7/P2St/4IrwaAdLA2gIR0CwQtUAo5PudX2UKGgGR7/qSSvC/GlzaAdLCGgIR0CwQve+dsi0dX2UKGgGR8AADEYO2AoYaAdLFWgIR0CwQzq9CeEqdX2UKGgGR7/ZMXJo0ygxaAdLBGgIR0CwQt3J1aGIdX2UKGgGR7/geo1k1/DtaAdLBWgIR0CwQ0Xt0FKTdX2UKGgGR7/shVdX1anraAdLCWgIR0CwQwtYwIt2dX2UKGgGR7+pBAv+OwPiaAdLAWgIR0CwQw2saKk3dX2UKGgGR7/piK77Kq4paAdLB2gIR0CwQu1mjCYUdX2UKGgGR7/6Ye1a4c3maAdLEWgIR0CwQzFtTDO1dX2UKGgGR7/2GGRFI/Z/aAdLDGgIR0CwQ1+BUaQ4dX2UKGgGR7/w04ecQRPHaAdLC2gIR0CwQyTrJKaodX2UKGgGR7/4w+lj3EhraAdLEWgIR0CwQxDpC8e0dX2UKGgGR7/xHW4EwFkhaAdLC2gIR0CwQ3aYiPhidX2UKGgGR7/+QVbiZOSGaAdLEmgIR0CwQ1d0V8CxdX2UKGgGR7/12nsLORkmaAdLD2gIR0CwQ0ZWV/tqdX2UKGgGR7/hXos7MgU2aAdLB2gIR0CwQ4dOuaF3dX2UKGgGR7/ps23rleWwaAdLCWgIR0CwQ2xR/EwWdX2UKGgGR7/r92gWac7RaAdLDGgIR0CwQyyO/+KkdX2UKGgGR7/ZxJ/XoTwlaAdLBGgIR0CwQzUDZDiPdX2UKGgGR7/a065oXbdraAdLBWgIR0CwQ3cUypJgdX2UKGgGR7/fPw/gR9PUaAdLBmgIR0CwQ4LnDBM0dX2UKGgGR7/MDrZ8KG+LaAdLA2gIR0CwQ4mGmDUWdX2UKGgGR7/Z5RCQcPvsaAdLBGgIR0CwQ5RlDneSdX2UKGgGR7/zNMj/uLJkaAdLD2gIR0CwQ1bkbPyDdX2UKGgGR7/Mhje9Ba9saAdLA2gIR0CwQ109U0emdX2UKGgGR8AIznV5KODKaAdLG2gIR0CwQ4GdAgPmdX2UKGgGR7/O5cTrVvuPaAdLA2gIR0CwQ4fbwjMWdX2UKGgGR7/orULDye7MaAdLCmgIR0CwQ6mnn+yadX2UKGgGR7/V7E5yU9pzaAdLBGgIR0CwQ7IdZJTVdX2UKGgGR7/t4wRGtp22aAdLCmgIR0CwQ3Ivi97GdX2UKGgGR8AMhkbxVhkRaAdLI2gIR0CwQ9OC5EtvdX2UKGgGR7/i8zhxYJVsaAdLBmgIR0CwQ5TS9du6dX2UKGgGR7/CHsTnJT2naAdLAmgIR0CwQ9d3W4EwdX2UKGgGR7/tQwK0D2alaAdLCmgIR0CwQ8cMI/qxdX2UKGgGR7/yVie/Yao/aAdLCmgIR0CwQ4dd7fHhdX2UKGgGR7/zN6LOzIFNaAdLCmgIR0CwQ6oXCTEBdX2UKGgGR7/3BekYXO4YaAdLD2gIR0CwQ/dPYWcjdX2UKGgGR7/wwqiGnGbTaAdLCWgIR0CwQ9pTdcjadX2UKGgGR7/PypaRp1zRaAdLA2gIR0CwQ+EKmbb2dX2UKGgGR7/yGP5pJwsHaAdLDGgIR0CwQ8QfhddFdX2UKGgGR7/pp0OmR/3GaAdLBmgIR0CwRAUAxSHedX2UKGgGR7/E3n6l+EytaAdLA2gIR0CwQ+fWUbDNdX2UKGgGR7/5cGorFwT/aAdLEGgIR0CwQ6ozWPLgdX2UKGgGR7/RP6sQumJnaAdLBGgIR0CwRA29tdiVdWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 79,
    "n_steps": 64,
    "gamma": 0.95,
    "gae_lambda": 1.0,
    "ent_coef": 0.0,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "normalize_advantage": false,
    "observation_space": {
        ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
        ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
        "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
        "_shape": null,
        "dtype": null,
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gymnasium.spaces.box.Box'>",
        ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
        "dtype": "float32",
        "bounded_below": "[ True  True  True]",
        "bounded_above": "[ True  True  True]",
        "_shape": [
            3
        ],
        "low": "[-1. -1. -1.]",
        "high": "[1. 1. 1.]",
        "low_repr": "-1.0",
        "high_repr": "1.0",
        "_np_random": null
    },
    "n_envs": 4,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    }
}