a2c-PandaReachDense-v3 / config.json
Lamurias's picture
Alt params 20k
28e3c9c
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a750ccccd30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a750ccc57c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVlAAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKEtAS0BljA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "net_arch": [64, 64], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 20224, "_total_timesteps": 20000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695743581709051576, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAO1BMPqK4DLxXlN8+XkTevWz3b787LxK+5wEgvvRj/D/2ZBLAkGaRP56Xdj/N1Ew/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOTCZP2+un79jTwg/5EZsvmZMkL9Vk5s90TKcP4zZwj8ZGbK/iYd8P+O8GT+SP9++lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA7UEw+orgMvFeU3z4kt9o+B1Viu9ONtz5eRN69bPdvvzsvEr5heWS/5rhkvMpnfr/nASC+9GP8P/ZkEsCF08y/woWrP1EIrr6QZpE/npd2P83UTD+jDZk/rwaLPyhEPb+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.1995248 -0.00858894 0.43667862]\n [-0.10852884 -0.9373691 -0.1427583 ]\n [-0.15625726 1.9718003 -2.2874122 ]\n [ 1.1359425 0.963251 0.8001221 ]]", "desired_goal": "[[ 1.1967841 -1.2475108 0.53246135]\n [-0.23073918 -1.1273315 0.07596461]\n [ 1.2203008 1.522264 -1.3913909 ]\n [ 0.9864431 0.60053843 -0.43603188]]", "observation": "[[ 0.1995248 -0.00858894 0.43667862 0.4271785 -0.00345355 0.3585039 ]\n [-0.10852884 -0.9373691 -0.1427583 -0.8924771 -0.0139601 -0.9937712 ]\n [-0.15625726 1.9718003 -2.2874122 -1.6002051 1.3400195 -0.3399072 ]\n [ 1.1359425 0.963251 0.8001221 1.1957287 1.0861415 -0.73932123]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABAC/PfJxnDxZyPg9jT3+vYRKFj2mQqc9MIedPYco1T1VyQ8+ra8LPci7aL0hd40+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09326175 0.0190973 0.12147588]\n [-0.12414084 0.03669216 0.08167009]\n [ 0.07691801 0.10408121 0.14041646]\n [ 0.03410308 -0.05681971 0.2762995 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.011200000000000099, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7/atcOby6OMAWyUSwKMAXSUR0CwQdA1zhgmdX2UKGgGR7/ihXS0BwMqaAdLB2gIR0CwQZPStvGZdX2UKGgGR7/lbdJrcj7iaAdLB2gIR0CwQXn6dlNDdX2UKGgGR7/YddE9dNWVaAdLBGgIR0CwQZzIBBAwdX2UKGgGR7++FAVwgkkbaAdLAmgIR0CwQaHDvVmSdX2UKGgGR7/avMKTjebeaAdLBGgIR0CwQYOdkJ8fdX2UKGgGR7/rN1hb4agmaAdLCmgIR0CwQec2zfJndX2UKGgGR7/gra24NI9UaAdLBmgIR0CwQa7mp2lmdX2UKGgGR7/kCjL0SRKZaAdLBWgIR0CwQbkvf0mMdX2UKGgGR7/yDXWe6I3zaAdLCmgIR0CwQZjlkpZwdX2UKGgGR7/vNoakyk9EaAdLCmgIR0CwQfxYigTRdX2UKGgGR7+6IcinpB5YaAdLAmgIR0CwQb3fMwDedX2UKGgGR7/sxoAXEZR9aAdLCmgIR0CwQa+BQN1AdX2UKGgGR7/wntnf2saLaAdLCWgIR0CwQdJ9uxbCdX2UKGgGR8ATp+gDifg8aAdLMmgIR0CwQfR8+iaidX2UKGgGR7+jCcf/3nIRaAdLAWgIR0CwQdVBUrCndX2UKGgGR7/XCNjslb/waAdLBGgIR0CwQbnhCMP0dX2UKGgGR7/93SF49ovjaAdLEmgIR0CwQidnoPkJdX2UKGgGR7/lw6hg3LmqaAdLCGgIR0CwQejUExIrdX2UKGgGR7/kI3R5TqB3aAdLCGgIR0CwQczvVmSRdX2UKGgGR7/pQhOgxrSFaAdLCWgIR0CwQjtPLxI8dX2UKGgGR7/rsNlRP421aAdLC2gIR0CwQeVqN6w/dX2UKGgGR7/08aXKKYReaAdLDmgIR0CwQghAKOT8dX2UKGgGR7/nz/IbOu7paAdLCGgIR0CwQk3hGYrsdX2UKGgGR7/pAgxJul41aAdLCGgIR0CwQhn/Pw/gdX2UKGgGR7/2Xk92X9iuaAdLDGgIR0CwQjWUGFBZdX2UKGgGR8AQ0Iu5BkZraAdLLmgIR0CwQl4bKifydX2UKGgGR8ACNovi97F9aAdLF2gIR0CwQoIp2ECedX2UKGgGR7/dWk8A7xNJaAdLBWgIR0CwQmms7uD0dX2UKGgGR7/isaCL/CIlaAdLBmgIR0CwQo91EE1VdX2UKGgGR7/4zfR/mT1TaAdLDmgIR0CwQlUx20RfdX2UKGgGR8AKEolUp/gBaAdLJ2gIR0CwQj36qKgqdX2UKGgGR7/oblijL0SRaAdLCGgIR0CwQqHvlU6xdX2UKGgGR7/XU9pyp71JaAdLBmgIR0CwQmNMXaakdX2UKGgGR7/2cIeHSF4+aAdLEGgIR0CwQpARwqAjdX2UKGgGR7/kMHB1s+FDaAdLBmgIR0CwQnLT6SDAdX2UKGgGR7/GkbgjyFwlaAdLA2gIR0CwQpZ6IFeOdX2UKGgGR7/wAqEvkBCEaAdLC2gIR0CwQrzHKfWddX2UKGgGR7/xmFFlTWGzaAdLDWgIR0CwQl3WFvhqdX2UKGgGR7/vWM85jpcHaAdLCmgIR0CwQoqqOtGNdX2UKGgGR7/5dlEqlP8AaAdLDGgIR0CwQrNz4k/sdX2UKGgGR7/0KPOpsGgSaAdLDGgIR0CwQtl6qsEJdX2UKGgGR7/dzgMtsenyaAdLBmgIR0CwQubGBFuvdX2UKGgGR7/4qynk1dgOaAdLDmgIR0CwQqoyGi5/dX2UKGgGR7/pmoaUA1ejaAdLCGgIR0CwQr06kqMFdX2UKGgGR8ADnX7Lt/nXaAdLFWgIR0CwQuNcv/R3dX2UKGgGR7/289W6shgWaAdLEGgIR0CwQwwW3z+WdX2UKGgGR7/jOu7pV0cPaAdLB2gIR0CwQs1p0wJxdX2UKGgGR7/r9AgPmPo3aAdLCWgIR0CwQvePmxMWdX2UKGgGR7/p44yXUpd9aAdLCGgIR0CwQt633HrAdX2UKGgGR8ARvufEn9ehaAdLKmgIR0CwQr5H3DekdX2UKGgGR7/RC2tuDSPVaAdLBGgIR0CwQwBDLKV6dX2UKGgGR7+3a/RE4NqhaAdLAmgIR0CwQwWkvboKdX2UKGgGR7/OBo24uscRaAdLA2gIR0CwQuZR4yGjdX2UKGgGR7/OgFHJ9y93aAdLA2gIR0CwQwutW+49dX2UKGgGR7/i2fTTfBN3aAdLB2gIR0CwQs6CpWFOdX2UKGgGR7/P2St/4IrwaAdLA2gIR0CwQtUAo5PudX2UKGgGR7/qSSvC/GlzaAdLCGgIR0CwQve+dsi0dX2UKGgGR8AADEYO2AoYaAdLFWgIR0CwQzq9CeEqdX2UKGgGR7/ZMXJo0ygxaAdLBGgIR0CwQt3J1aGIdX2UKGgGR7/geo1k1/DtaAdLBWgIR0CwQ0Xt0FKTdX2UKGgGR7/shVdX1anraAdLCWgIR0CwQwtYwIt2dX2UKGgGR7+pBAv+OwPiaAdLAWgIR0CwQw2saKk3dX2UKGgGR7/piK77Kq4paAdLB2gIR0CwQu1mjCYUdX2UKGgGR7/6Ye1a4c3maAdLEWgIR0CwQzFtTDO1dX2UKGgGR7/2GGRFI/Z/aAdLDGgIR0CwQ1+BUaQ4dX2UKGgGR7/w04ecQRPHaAdLC2gIR0CwQyTrJKaodX2UKGgGR7/4w+lj3EhraAdLEWgIR0CwQxDpC8e0dX2UKGgGR7/xHW4EwFkhaAdLC2gIR0CwQ3aYiPhidX2UKGgGR7/+QVbiZOSGaAdLEmgIR0CwQ1d0V8CxdX2UKGgGR7/12nsLORkmaAdLD2gIR0CwQ0ZWV/tqdX2UKGgGR7/hXos7MgU2aAdLB2gIR0CwQ4dOuaF3dX2UKGgGR7/ps23rleWwaAdLCWgIR0CwQ2xR/EwWdX2UKGgGR7/r92gWac7RaAdLDGgIR0CwQyyO/+KkdX2UKGgGR7/ZxJ/XoTwlaAdLBGgIR0CwQzUDZDiPdX2UKGgGR7/a065oXbdraAdLBWgIR0CwQ3cUypJgdX2UKGgGR7/fPw/gR9PUaAdLBmgIR0CwQ4LnDBM0dX2UKGgGR7/MDrZ8KG+LaAdLA2gIR0CwQ4mGmDUWdX2UKGgGR7/Z5RCQcPvsaAdLBGgIR0CwQ5RlDneSdX2UKGgGR7/zNMj/uLJkaAdLD2gIR0CwQ1bkbPyDdX2UKGgGR7/Mhje9Ba9saAdLA2gIR0CwQ109U0emdX2UKGgGR8AIznV5KODKaAdLG2gIR0CwQ4GdAgPmdX2UKGgGR7/O5cTrVvuPaAdLA2gIR0CwQ4fbwjMWdX2UKGgGR7/orULDye7MaAdLCmgIR0CwQ6mnn+yadX2UKGgGR7/V7E5yU9pzaAdLBGgIR0CwQ7IdZJTVdX2UKGgGR7/t4wRGtp22aAdLCmgIR0CwQ3Ivi97GdX2UKGgGR8AMhkbxVhkRaAdLI2gIR0CwQ9OC5EtvdX2UKGgGR7/i8zhxYJVsaAdLBmgIR0CwQ5TS9du6dX2UKGgGR7/CHsTnJT2naAdLAmgIR0CwQ9d3W4EwdX2UKGgGR7/tQwK0D2alaAdLCmgIR0CwQ8cMI/qxdX2UKGgGR7/yVie/Yao/aAdLCmgIR0CwQ4dd7fHhdX2UKGgGR7/zN6LOzIFNaAdLCmgIR0CwQ6oXCTEBdX2UKGgGR7/3BekYXO4YaAdLD2gIR0CwQ/dPYWcjdX2UKGgGR7/wwqiGnGbTaAdLCWgIR0CwQ9pTdcjadX2UKGgGR7/PypaRp1zRaAdLA2gIR0CwQ+EKmbb2dX2UKGgGR7/yGP5pJwsHaAdLDGgIR0CwQ8QfhddFdX2UKGgGR7/pp0OmR/3GaAdLBmgIR0CwRAUAxSHedX2UKGgGR7/E3n6l+EytaAdLA2gIR0CwQ+fWUbDNdX2UKGgGR7/5cGorFwT/aAdLEGgIR0CwQ6ozWPLgdX2UKGgGR7/RP6sQumJnaAdLBGgIR0CwRA29tdiVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 79, "n_steps": 64, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}