Lamurias commited on
Commit
2ad4df0
·
1 Parent(s): 278f4ab

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.18 +/- 0.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77f28b4402c9a58f333786a7c0728cdb0855c0a99327a983fa47e49f4a19cc38
3
+ size 106832
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a750ccccd30>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7a750ccc57c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1695739523153021412,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhKa6v7kW6j/7+wfAmLVCPrLMd7z1D9c+9EaBv8bbqb8i1ps+RLJavy8iiD+gm52/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbQ++v66FdT9E+q2//NTZP2UFwj/Cyi4/evG4vmNOyr9+1SE/Rv1cv31DBz9oD6S/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACEprq/uRbqP/v7B8Cf2rS/W4QcP03ydr+YtUI+ssx3vPUP1z7j8+M+mZWFu4IWvT70RoG/xtupvyLWmz7QpzG/wkiJv/yyS75Eslq/LyKIP6Cbnb9zrXC/BV4TP/c/dr+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-1.4582067 1.8288184 -2.1247547 ]\n [ 0.19014585 -0.01512449 0.42004362]\n [-1.0099778 -1.3270195 0.30436808]\n [-0.8542826 1.0635432 -1.2313118 ]]",
34
+ "desired_goal": "[[-1.4848458 0.95907104 -1.3592 ]\n [ 1.7018123 1.5157896 0.68278134]\n [-0.36121732 -1.5805172 0.6321639 ]\n [-0.86323965 0.52837354 -1.2817202 ]]",
35
+ "observation": "[[-1.4582067 1.8288184 -2.1247547 -1.4129218 0.6113946 -0.9646347 ]\n [ 0.19014585 -0.01512449 0.42004362 0.44522008 -0.00407667 0.36931235]\n [-1.0099778 -1.3270195 0.30436808 -0.69396687 -1.0725329 -0.19892496]\n [-0.8542826 1.0635432 -1.2313118 -0.9401466 0.5756534 -0.9619135 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmMuNvEV5vj3ifzY+97savROv4L0+b44+IjkFvimXF73F5548V6mBPWxOjz3YEIo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.017309 0.09300474 0.17822221]\n [-0.03777691 -0.10970893 0.27819246]\n [-0.13010076 -0.03700939 0.01939763]\n [ 0.06331127 0.0699738 0.26965976]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8U5ZKWcBluMAWyUSwOMAXSUR0CmSegtOEdvdX2UKGgGR7/adDpkf9xZaAdLBGgIR0CmSSogFHJ+dX2UKGgGR7+4oWpIczZZaAdLAmgIR0CmSfOJtSAIdX2UKGgGR7/OxbjcVQANaAdLA2gIR0CmSbVCw8nvdX2UKGgGR7/PW7voePq+aAdLBGgIR0CmSXqVpsXSdX2UKGgGR7/bJBw++ueSaAdLBGgIR0CmST3ljmSydX2UKGgGR7/Kow22oegdaAdLA2gIR0CmSgCtRvWIdX2UKGgGR7+3G0eEIw/QaAdLAmgIR0CmSYNix3V1dX2UKGgGR7/dRLsa86FNaAdLBGgIR0CmSckidJ8OdX2UKGgGR7/QKBd2Pkq+aAdLA2gIR0CmSU/LTx5LdX2UKGgGR7/RpkPMB6rvaAdLA2gIR0CmShLvTgEVdX2UKGgGR7+6912aDwpfaAdLAmgIR0CmSdSsjmjkdX2UKGgGR7/aGT9sJpnIaAdLBGgIR0CmSZpiqhlEdX2UKGgGR7/A7lq8DjioaAdLAmgIR0CmShz8YQ8PdX2UKGgGR7/KjnFHavicaAdLA2gIR0CmSWGkN4JNdX2UKGgGR7/HW/ag2606aAdLA2gIR0CmSeoVM23sdX2UKGgGR7+lSde6Zpi7aAdLAWgIR0CmSWqqXF98dX2UKGgGR7/L7IkqtozvaAdLA2gIR0CmSjGBe5WjdX2UKGgGR7+zfZVXFLnLaAdLAmgIR0CmSfMjNY8udX2UKGgGR7/ePvrnkkrxaAdLBGgIR0CmSbSmQ8wIdX2UKGgGR7+R7RfF72L6aAdLAWgIR0CmSjZtFa0QdX2UKGgGR7/Ki8nNPgvUaAdLA2gIR0CmSXg1m8NAdX2UKGgGR7+9o24uscQzaAdLAmgIR0CmSfw2l2vCdX2UKGgGR7+4co6S1Vo6aAdLAmgIR0CmSgd6sySFdX2UKGgGR7/NnGsFMZgpaAdLA2gIR0CmSYgntv4udX2UKGgGR7/ZcQyyleniaAdLBGgIR0CmSkrAP/aQdX2UKGgGR7+id8Rcu8K5aAdLAWgIR0CmSYx5kbxWdX2UKGgGR7+4r4Fiay8jaAdLAmgIR0CmShCsOoYOdX2UKGgGR7/dEfDDTBqLaAdLBmgIR0CmSdHWSU1RdX2UKGgGR7/MmPYFqzqsaAdLA2gIR0CmSlofjjrBdX2UKGgGR7/GNedCmdiEaAdLA2gIR0CmSZwdsBQvdX2UKGgGR7/JN34bjtG/aAdLA2gIR0CmSiBDgIhRdX2UKGgGR7+KGpMpPRAsaAdLAWgIR0CmSaB6a9bpdX2UKGgGR7/GXhOxjawmaAdLA2gIR0CmSmcMEzO5dX2UKGgGR7+8dJaq0dBCaAdLAmgIR0CmSakiliz+dX2UKGgGR7/QumrKeTV2aAdLA2gIR0CmSi1ghKUWdX2UKGgGR7/iz5XU6PsBaAdLBmgIR0CmSe6j3225dX2UKGgGR7/F2kBS1maqaAdLAmgIR0CmSnL9ETg3dX2UKGgGR7/IaZx7zCk5aAdLA2gIR0CmSbmdRR/FdX2UKGgGR7/LIyTINmUXaAdLA2gIR0CmSf7212JSdX2UKGgGR7/SmHxjJ+2FaAdLA2gIR0CmSoEELYwqdX2UKGgGR7/WeOGTLW7OaAdLBGgIR0CmSkMWfseGdX2UKGgGR7+nMGHHmzSkaAdLAWgIR0CmSoX7UG3XdX2UKGgGR7+9lum78Nx3aAdLAmgIR0CmSgkMb3oLdX2UKGgGR7/O8U21lXijaAdLA2gIR0CmSciIDYAbdX2UKGgGR7/UUC7sfJV9aAdLA2gIR0CmSlMS00FbdX2UKGgGR7++LQ5WBBiTaAdLAmgIR0CmShQ+UyHmdX2UKGgGR7+oB7u2JBPbaAdLAWgIR0CmSldWyTpxdX2UKGgGR7/QpYs/Y8MeaAdLA2gIR0CmSdd92HLzdX2UKGgGR7/eis4ku6EraAdLBGgIR0CmSpog3cYZdX2UKGgGR7+9AlfJFLFoaAdLAmgIR0CmSh0/nnuBdX2UKGgGR7+6Ur08NhE0aAdLAmgIR0CmSmCHZbpvdX2UKGgGR7+3jm0VrRBvaAdLAmgIR0CmSigIppevdX2UKGgGR7/RXmNipeeGaAdLA2gIR0CmSec3uNPydX2UKGgGR7/OeOGTLW7OaAdLA2gIR0CmSqncDbJwdX2UKGgGR7+2JoCdSVGDaAdLAmgIR0CmSmuLJjlQdX2UKGgGR7+jL2YfGMn7aAdLAWgIR0CmSizfBN21dX2UKGgGR7/LV5KODJ2daAdLA2gIR0CmSfQ5myxBdX2UKGgGR7/RhVU+9rXUaAdLA2gIR0CmSrbiyY5UdX2UKGgGR7/SsxO+IuXeaAdLA2gIR0CmSnipWFN+dX2UKGgGR7/UrMTviLl4aAdLA2gIR0CmSjnjhky2dX2UKGgGR7+iJfpljEvTaAdLAWgIR0CmSflxXGOudX2UKGgGR7+jnPmgam4zaAdLAWgIR0CmSr6ZYxL1dX2UKGgGR7/QsN2C/XXiaAdLA2gIR0CmSgj63y7PdX2UKGgGR7/UPKuB+WnkaAdLA2gIR0CmSsu7HyVfdX2UKGgGR7/aPqLS/j82aAdLBGgIR0CmSo1oQFs6dX2UKGgGR7/cAkLQXyiFaAdLBGgIR0CmSk7Hp8nedX2UKGgGR7+3qeK8+RozaAdLAmgIR0CmSll4cFQmdX2UKGgGR7/NrVvuPV/daAdLA2gIR0CmShi2MKkVdX2UKGgGR7/UpbUwztTlaAdLA2gIR0CmSttpmEoOdX2UKGgGR7/c+FUQ04zaaAdLBGgIR0CmSqEcS5AhdX2UKGgGR7/A32mHgxagaAdLAmgIR0CmSuO6unuRdX2UKGgGR7+niBGx2SuAaAdLAWgIR0CmSqVOCXhPdX2UKGgGR7/KeZG8VYZEaAdLA2gIR0CmSiWcz67/dX2UKGgGR7/Rzkp7TlT4aAdLBGgIR0CmSmrO7g89dX2UKGgGR7/GXKr7wazeaAdLA2gIR0CmSvKSX+l1dX2UKGgGR7/RO2iL2pQ2aAdLA2gIR0CmSrQu27WedX2UKGgGR7/UZiNKh+OPaAdLA2gIR0CmSjREF4cFdX2UKGgGR7/LaHKwIMScaAdLA2gIR0CmSnliSaE0dX2UKGgGR7+/R2KVII4VaAdLAmgIR0CmSjyTyJ9BdX2UKGgGR7/ejzqbBoEkaAdLBGgIR0CmSwU5lvqDdX2UKGgGR7/aaM72criEaAdLBGgIR0CmSsbVJ+UhdX2UKGgGR7/OdyT6i0v5aAdLA2gIR0CmSogEEC/5dX2UKGgGR7+8/SpiqhlEaAdLAmgIR0CmSkc3l0YCdX2UKGgGR7+mJWNm16VuaAdLAWgIR0CmSkup84PxdX2UKGgGR7+9zwMH8jzJaAdLAmgIR0CmSpDwYtQLdX2UKGgGR7/H3oLXtjTbaAdLA2gIR0CmSxLv9cbBdX2UKGgGR7/X2itaIN3GaAdLBGgIR0CmStkbPyCndX2UKGgGR7/JUedTYNAkaAdLA2gIR0CmSlmO+7DmdX2UKGgGR7/WyO7xusLfaAdLA2gIR0CmSyL9MsYmdX2UKGgGR7/de+Eh7mdRaAdLBGgIR0CmSqWyTpxFdX2UKGgGR7/UwyIpH7P6aAdLA2gIR0CmSuitA9mpdX2UKGgGR7++saKk2xY8aAdLAmgIR0CmSq3wb2lEdX2UKGgGR7/V8Md92HLzaAdLBGgIR0CmSm065oXbdX2UKGgGR7/J5zHS4OMEaAdLA2gIR0CmSy/WDpTudX2UKGgGR7++tMfzSThYaAdLAmgIR0CmSz2THKfWdX2UKGgGR7/SFB6a9bosaAdLBGgIR0CmSv94FA3UdX2UKGgGR7/XNcGC7K7qaAdLBGgIR0CmSsTAvcrRdX2UKGgGR7/U42jwhGH6aAdLBGgIR0CmSoP5P/JedX2UKGgGR7/Mz7/GVAzIaAdLA2gIR0CmSww8GLUDdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1bd4799af266b01e23932e57919d948949253abd7aa55faad3b70785a9e9d8e
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69ba9cfc1983e96abe905eb925985bbbe081c1bc9f7e2906c21cafeb29f8880b
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a750ccccd30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a750ccc57c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695739523153021412, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhKa6v7kW6j/7+wfAmLVCPrLMd7z1D9c+9EaBv8bbqb8i1ps+RLJavy8iiD+gm52/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbQ++v66FdT9E+q2//NTZP2UFwj/Cyi4/evG4vmNOyr9+1SE/Rv1cv31DBz9oD6S/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACEprq/uRbqP/v7B8Cf2rS/W4QcP03ydr+YtUI+ssx3vPUP1z7j8+M+mZWFu4IWvT70RoG/xtupvyLWmz7QpzG/wkiJv/yyS75Eslq/LyKIP6Cbnb9zrXC/BV4TP/c/dr+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.4582067 1.8288184 -2.1247547 ]\n [ 0.19014585 -0.01512449 0.42004362]\n [-1.0099778 -1.3270195 0.30436808]\n [-0.8542826 1.0635432 -1.2313118 ]]", "desired_goal": "[[-1.4848458 0.95907104 -1.3592 ]\n [ 1.7018123 1.5157896 0.68278134]\n [-0.36121732 -1.5805172 0.6321639 ]\n [-0.86323965 0.52837354 -1.2817202 ]]", "observation": "[[-1.4582067 1.8288184 -2.1247547 -1.4129218 0.6113946 -0.9646347 ]\n [ 0.19014585 -0.01512449 0.42004362 0.44522008 -0.00407667 0.36931235]\n [-1.0099778 -1.3270195 0.30436808 -0.69396687 -1.0725329 -0.19892496]\n [-0.8542826 1.0635432 -1.2313118 -0.9401466 0.5756534 -0.9619135 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmMuNvEV5vj3ifzY+97savROv4L0+b44+IjkFvimXF73F5548V6mBPWxOjz3YEIo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.017309 0.09300474 0.17822221]\n [-0.03777691 -0.10970893 0.27819246]\n [-0.13010076 -0.03700939 0.01939763]\n [ 0.06331127 0.0699738 0.26965976]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8U5ZKWcBluMAWyUSwOMAXSUR0CmSegtOEdvdX2UKGgGR7/adDpkf9xZaAdLBGgIR0CmSSogFHJ+dX2UKGgGR7+4oWpIczZZaAdLAmgIR0CmSfOJtSAIdX2UKGgGR7/OxbjcVQANaAdLA2gIR0CmSbVCw8nvdX2UKGgGR7/PW7voePq+aAdLBGgIR0CmSXqVpsXSdX2UKGgGR7/bJBw++ueSaAdLBGgIR0CmST3ljmSydX2UKGgGR7/Kow22oegdaAdLA2gIR0CmSgCtRvWIdX2UKGgGR7+3G0eEIw/QaAdLAmgIR0CmSYNix3V1dX2UKGgGR7/dRLsa86FNaAdLBGgIR0CmSckidJ8OdX2UKGgGR7/QKBd2Pkq+aAdLA2gIR0CmSU/LTx5LdX2UKGgGR7/RpkPMB6rvaAdLA2gIR0CmShLvTgEVdX2UKGgGR7+6912aDwpfaAdLAmgIR0CmSdSsjmjkdX2UKGgGR7/aGT9sJpnIaAdLBGgIR0CmSZpiqhlEdX2UKGgGR7/A7lq8DjioaAdLAmgIR0CmShz8YQ8PdX2UKGgGR7/KjnFHavicaAdLA2gIR0CmSWGkN4JNdX2UKGgGR7/HW/ag2606aAdLA2gIR0CmSeoVM23sdX2UKGgGR7+lSde6Zpi7aAdLAWgIR0CmSWqqXF98dX2UKGgGR7/L7IkqtozvaAdLA2gIR0CmSjGBe5WjdX2UKGgGR7+zfZVXFLnLaAdLAmgIR0CmSfMjNY8udX2UKGgGR7/ePvrnkkrxaAdLBGgIR0CmSbSmQ8wIdX2UKGgGR7+R7RfF72L6aAdLAWgIR0CmSjZtFa0QdX2UKGgGR7/Ki8nNPgvUaAdLA2gIR0CmSXg1m8NAdX2UKGgGR7+9o24uscQzaAdLAmgIR0CmSfw2l2vCdX2UKGgGR7+4co6S1Vo6aAdLAmgIR0CmSgd6sySFdX2UKGgGR7/NnGsFMZgpaAdLA2gIR0CmSYgntv4udX2UKGgGR7/ZcQyyleniaAdLBGgIR0CmSkrAP/aQdX2UKGgGR7+id8Rcu8K5aAdLAWgIR0CmSYx5kbxWdX2UKGgGR7+4r4Fiay8jaAdLAmgIR0CmShCsOoYOdX2UKGgGR7/dEfDDTBqLaAdLBmgIR0CmSdHWSU1RdX2UKGgGR7/MmPYFqzqsaAdLA2gIR0CmSlofjjrBdX2UKGgGR7/GNedCmdiEaAdLA2gIR0CmSZwdsBQvdX2UKGgGR7/JN34bjtG/aAdLA2gIR0CmSiBDgIhRdX2UKGgGR7+KGpMpPRAsaAdLAWgIR0CmSaB6a9bpdX2UKGgGR7/GXhOxjawmaAdLA2gIR0CmSmcMEzO5dX2UKGgGR7+8dJaq0dBCaAdLAmgIR0CmSakiliz+dX2UKGgGR7/QumrKeTV2aAdLA2gIR0CmSi1ghKUWdX2UKGgGR7/iz5XU6PsBaAdLBmgIR0CmSe6j3225dX2UKGgGR7/F2kBS1maqaAdLAmgIR0CmSnL9ETg3dX2UKGgGR7/IaZx7zCk5aAdLA2gIR0CmSbmdRR/FdX2UKGgGR7/LIyTINmUXaAdLA2gIR0CmSf7212JSdX2UKGgGR7/SmHxjJ+2FaAdLA2gIR0CmSoEELYwqdX2UKGgGR7/WeOGTLW7OaAdLBGgIR0CmSkMWfseGdX2UKGgGR7+nMGHHmzSkaAdLAWgIR0CmSoX7UG3XdX2UKGgGR7+9lum78Nx3aAdLAmgIR0CmSgkMb3oLdX2UKGgGR7/O8U21lXijaAdLA2gIR0CmSciIDYAbdX2UKGgGR7/UUC7sfJV9aAdLA2gIR0CmSlMS00FbdX2UKGgGR7++LQ5WBBiTaAdLAmgIR0CmShQ+UyHmdX2UKGgGR7+oB7u2JBPbaAdLAWgIR0CmSldWyTpxdX2UKGgGR7/QpYs/Y8MeaAdLA2gIR0CmSdd92HLzdX2UKGgGR7/eis4ku6EraAdLBGgIR0CmSpog3cYZdX2UKGgGR7+9AlfJFLFoaAdLAmgIR0CmSh0/nnuBdX2UKGgGR7+6Ur08NhE0aAdLAmgIR0CmSmCHZbpvdX2UKGgGR7+3jm0VrRBvaAdLAmgIR0CmSigIppevdX2UKGgGR7/RXmNipeeGaAdLA2gIR0CmSec3uNPydX2UKGgGR7/OeOGTLW7OaAdLA2gIR0CmSqncDbJwdX2UKGgGR7+2JoCdSVGDaAdLAmgIR0CmSmuLJjlQdX2UKGgGR7+jL2YfGMn7aAdLAWgIR0CmSizfBN21dX2UKGgGR7/LV5KODJ2daAdLA2gIR0CmSfQ5myxBdX2UKGgGR7/RhVU+9rXUaAdLA2gIR0CmSrbiyY5UdX2UKGgGR7/SsxO+IuXeaAdLA2gIR0CmSnipWFN+dX2UKGgGR7/UrMTviLl4aAdLA2gIR0CmSjnjhky2dX2UKGgGR7+iJfpljEvTaAdLAWgIR0CmSflxXGOudX2UKGgGR7+jnPmgam4zaAdLAWgIR0CmSr6ZYxL1dX2UKGgGR7/QsN2C/XXiaAdLA2gIR0CmSgj63y7PdX2UKGgGR7/UPKuB+WnkaAdLA2gIR0CmSsu7HyVfdX2UKGgGR7/aPqLS/j82aAdLBGgIR0CmSo1oQFs6dX2UKGgGR7/cAkLQXyiFaAdLBGgIR0CmSk7Hp8nedX2UKGgGR7+3qeK8+RozaAdLAmgIR0CmSll4cFQmdX2UKGgGR7/NrVvuPV/daAdLA2gIR0CmShi2MKkVdX2UKGgGR7/UpbUwztTlaAdLA2gIR0CmSttpmEoOdX2UKGgGR7/c+FUQ04zaaAdLBGgIR0CmSqEcS5AhdX2UKGgGR7/A32mHgxagaAdLAmgIR0CmSuO6unuRdX2UKGgGR7+niBGx2SuAaAdLAWgIR0CmSqVOCXhPdX2UKGgGR7/KeZG8VYZEaAdLA2gIR0CmSiWcz67/dX2UKGgGR7/Rzkp7TlT4aAdLBGgIR0CmSmrO7g89dX2UKGgGR7/GXKr7wazeaAdLA2gIR0CmSvKSX+l1dX2UKGgGR7/RO2iL2pQ2aAdLA2gIR0CmSrQu27WedX2UKGgGR7/UZiNKh+OPaAdLA2gIR0CmSjREF4cFdX2UKGgGR7/LaHKwIMScaAdLA2gIR0CmSnliSaE0dX2UKGgGR7+/R2KVII4VaAdLAmgIR0CmSjyTyJ9BdX2UKGgGR7/ejzqbBoEkaAdLBGgIR0CmSwU5lvqDdX2UKGgGR7/aaM72criEaAdLBGgIR0CmSsbVJ+UhdX2UKGgGR7/OdyT6i0v5aAdLA2gIR0CmSogEEC/5dX2UKGgGR7+8/SpiqhlEaAdLAmgIR0CmSkc3l0YCdX2UKGgGR7+mJWNm16VuaAdLAWgIR0CmSkup84PxdX2UKGgGR7+9zwMH8jzJaAdLAmgIR0CmSpDwYtQLdX2UKGgGR7/H3oLXtjTbaAdLA2gIR0CmSxLv9cbBdX2UKGgGR7/X2itaIN3GaAdLBGgIR0CmStkbPyCndX2UKGgGR7/JUedTYNAkaAdLA2gIR0CmSlmO+7DmdX2UKGgGR7/WyO7xusLfaAdLA2gIR0CmSyL9MsYmdX2UKGgGR7/de+Eh7mdRaAdLBGgIR0CmSqWyTpxFdX2UKGgGR7/UwyIpH7P6aAdLA2gIR0CmSuitA9mpdX2UKGgGR7++saKk2xY8aAdLAmgIR0CmSq3wb2lEdX2UKGgGR7/V8Md92HLzaAdLBGgIR0CmSm065oXbdX2UKGgGR7/J5zHS4OMEaAdLA2gIR0CmSy/WDpTudX2UKGgGR7++tMfzSThYaAdLAmgIR0CmSz2THKfWdX2UKGgGR7/SFB6a9bosaAdLBGgIR0CmSv94FA3UdX2UKGgGR7/XNcGC7K7qaAdLBGgIR0CmSsTAvcrRdX2UKGgGR7/U42jwhGH6aAdLBGgIR0CmSoP5P/JedX2UKGgGR7/Mz7/GVAzIaAdLA2gIR0CmSww8GLUDdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (717 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.17955319676548243, "std_reward": 0.08634934309681423, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-26T15:33:19.870828"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e34a3f69fea82d8d8d0794433857558c358e9577c34dca395dcd9d3bd0ba2745
3
+ size 2636