--- language: - zh license: apache-2.0 widget: - text: "生活的真谛是[MASK]。" --- # Mengzi-BERT base model (Chinese) Pretrained model on 300G Chinese corpus. Masked language modeling(MLM), part-of-speech(POS) tagging and sentence order prediction(SOP) are used as training task. [Mengzi: A lightweight yet Powerful Chinese Pre-trained Language Model](www.example.com) ## Usage ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained("Langboat/mengzi-bert-base") model = BertModel.from_pretrained("Langboat/mengzi-bert-base") ``` ## Scores on nine chinese tasks (without any data augmentation) |Model|AFQMC|TNEWS|IFLYTEK|CMNLI|WSC|CSL|CMRC|C3|CHID| |-|-|-|-|-|-|-|-|-|-| |RoBERTa-wwm-ext|74.04|56.94|60.31|80.51|67.80|81.00|75.20|66.50|83.62| |Mengzi-BERT-base|74.58|57.97|60.68|82.12|87.50|85.40|78.54|71.70|84.16| RoBERTa-wwm-ext scores are from CLUE baseline ## Citation If you find the technical report or resource is useful, please cite the following technical report in your paper. ``` example ```