File size: 116,708 Bytes
d56c069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
[2023-04-14 06:57:51,009] [WARNING] [runner.py:190:fetch_hostfile] Unable to find hostfile, will proceed with training with local resources only.
[2023-04-14 06:57:51,024] [INFO] [runner.py:540:main] cmd = /usr/local/bin/python -u -m deepspeed.launcher.launch --world_info=eyJsb2NhbGhvc3QiOiBbMF19 --master_addr=127.0.0.1 --master_port=29500 --enable_each_rank_log=None main.py --model_name_or_path facebook/opt-1.3b --gradient_accumulation_steps 2 --lora_dim 128 --zero_stage 0 --deepspeed --output_dir /output/DeepSpeedExamples/applications/DeepSpeed-Chat/output/actor-models/1.3b
[2023-04-14 06:57:54,173] [INFO] [launch.py:222:main] 0 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.13.4-1+cuda11.7
[2023-04-14 06:57:54,173] [INFO] [launch.py:222:main] 0 NCCL_VERSION=2.13.4-1
[2023-04-14 06:57:54,173] [INFO] [launch.py:222:main] 0 NV_LIBNCCL_PACKAGE_VERSION=2.13.4-1
[2023-04-14 06:57:54,173] [INFO] [launch.py:222:main] 0 NV_LIBNCCL_PACKAGE=libnccl2=2.13.4-1+cuda11.7
[2023-04-14 06:57:54,173] [INFO] [launch.py:222:main] 0 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
[2023-04-14 06:57:54,173] [INFO] [launch.py:222:main] 0 NV_LIBNCCL_PACKAGE_NAME=libnccl2
[2023-04-14 06:57:54,173] [INFO] [launch.py:222:main] 0 NV_LIBNCCL_DEV_PACKAGE_VERSION=2.13.4-1
[2023-04-14 06:57:54,173] [INFO] [launch.py:229:main] WORLD INFO DICT: {'localhost': [0]}
[2023-04-14 06:57:54,173] [INFO] [launch.py:235:main] nnodes=1, num_local_procs=1, node_rank=0
[2023-04-14 06:57:54,173] [INFO] [launch.py:246:main] global_rank_mapping=defaultdict(<class 'list'>, {'localhost': [0]})
[2023-04-14 06:57:54,173] [INFO] [launch.py:247:main] dist_world_size=1
[2023-04-14 06:57:54,173] [INFO] [launch.py:249:main] Setting CUDA_VISIBLE_DEVICES=0
[2023-04-14 06:57:58,372] [INFO] [comm.py:586:init_distributed] Initializing TorchBackend in DeepSpeed with backend nccl

Downloading (…)okenizer_config.json:   0%|          | 0.00/685 [00:00<?, ?B/s]
Downloading (…)okenizer_config.json: 100%|██████████| 685/685 [00:00<00:00, 46.7kB/s]

Downloading (…)lve/main/config.json:   0%|          | 0.00/653 [00:00<?, ?B/s]
Downloading (…)lve/main/config.json: 100%|██████████| 653/653 [00:00<00:00, 196kB/s]

Downloading (…)olve/main/vocab.json:   0%|          | 0.00/899k [00:00<?, ?B/s]
Downloading (…)olve/main/vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 1.01MB/s]
Downloading (…)olve/main/vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 1.01MB/s]

Downloading (…)olve/main/merges.txt:   0%|          | 0.00/456k [00:00<?, ?B/s]
Downloading (…)olve/main/merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 645kB/s]
Downloading (…)olve/main/merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 643kB/s]

Downloading (…)cial_tokens_map.json:   0%|          | 0.00/441 [00:00<?, ?B/s]
Downloading (…)cial_tokens_map.json: 100%|██████████| 441/441 [00:00<00:00, 90.2kB/s]

Downloading pytorch_model.bin:   0%|          | 0.00/2.63G [00:00<?, ?B/s]
Downloading pytorch_model.bin:   0%|          | 10.5M/2.63G [00:00<01:57, 22.3MB/s]
Downloading pytorch_model.bin:   1%|          | 21.0M/2.63G [00:00<01:19, 32.9MB/s]
Downloading pytorch_model.bin:   1%|          | 31.5M/2.63G [00:00<01:05, 39.6MB/s]
Downloading pytorch_model.bin:   2%|▏         | 41.9M/2.63G [00:01<00:58, 44.0MB/s]
Downloading pytorch_model.bin:   2%|▏         | 52.4M/2.63G [00:01<00:55, 46.3MB/s]
Downloading pytorch_model.bin:   2%|▏         | 62.9M/2.63G [00:01<00:53, 47.7MB/s]
Downloading pytorch_model.bin:   3%|▎         | 73.4M/2.63G [00:01<00:52, 49.1MB/s]
Downloading pytorch_model.bin:   3%|▎         | 83.9M/2.63G [00:01<00:51, 49.7MB/s]
Downloading pytorch_model.bin:   4%|▎         | 94.4M/2.63G [00:02<00:50, 50.5MB/s]
Downloading pytorch_model.bin:   4%|▍         | 105M/2.63G [00:02<00:48, 52.0MB/s] 
Downloading pytorch_model.bin:   4%|▍         | 115M/2.63G [00:02<00:48, 51.8MB/s]
Downloading pytorch_model.bin:   5%|▍         | 126M/2.63G [00:02<00:48, 51.8MB/s]
Downloading pytorch_model.bin:   5%|▌         | 136M/2.63G [00:02<00:47, 52.2MB/s]
Downloading pytorch_model.bin:   6%|▌         | 147M/2.63G [00:03<00:48, 51.4MB/s]
Downloading pytorch_model.bin:   6%|▌         | 157M/2.63G [00:03<00:47, 52.0MB/s]
Downloading pytorch_model.bin:   6%|▋         | 168M/2.63G [00:03<00:47, 51.6MB/s]
Downloading pytorch_model.bin:   7%|▋         | 178M/2.63G [00:03<00:47, 51.6MB/s]
Downloading pytorch_model.bin:   7%|▋         | 189M/2.63G [00:03<00:47, 51.8MB/s]
Downloading pytorch_model.bin:   8%|▊         | 199M/2.63G [00:04<00:48, 49.8MB/s]
Downloading pytorch_model.bin:   8%|▊         | 210M/2.63G [00:04<00:48, 50.4MB/s]
Downloading pytorch_model.bin:   8%|▊         | 220M/2.63G [00:04<00:47, 51.0MB/s]
Downloading pytorch_model.bin:   9%|▉         | 231M/2.63G [00:04<00:46, 51.8MB/s]
Downloading pytorch_model.bin:   9%|▉         | 241M/2.63G [00:04<00:43, 55.4MB/s]
Downloading pytorch_model.bin:  10%|▉         | 252M/2.63G [00:05<00:43, 54.5MB/s]
Downloading pytorch_model.bin:  10%|▉         | 262M/2.63G [00:05<00:43, 54.6MB/s]
Downloading pytorch_model.bin:  10%|█         | 273M/2.63G [00:05<00:43, 54.2MB/s]
Downloading pytorch_model.bin:  11%|█         | 283M/2.63G [00:05<00:43, 53.7MB/s]
Downloading pytorch_model.bin:  11%|█         | 294M/2.63G [00:05<00:43, 53.5MB/s]
Downloading pytorch_model.bin:  12%|█▏        | 304M/2.63G [00:06<00:43, 52.9MB/s]
Downloading pytorch_model.bin:  12%|█▏        | 315M/2.63G [00:06<00:45, 51.3MB/s]
Downloading pytorch_model.bin:  12%|█▏        | 325M/2.63G [00:06<00:44, 51.3MB/s]
Downloading pytorch_model.bin:  13%|█▎        | 336M/2.63G [00:06<00:44, 51.6MB/s]
Downloading pytorch_model.bin:  13%|█▎        | 346M/2.63G [00:06<00:43, 52.3MB/s]
Downloading pytorch_model.bin:  14%|█▎        | 357M/2.63G [00:07<00:43, 52.3MB/s]
Downloading pytorch_model.bin:  14%|█▍        | 367M/2.63G [00:07<00:43, 52.1MB/s]
Downloading pytorch_model.bin:  14%|█▍        | 377M/2.63G [00:07<00:43, 52.2MB/s]
Downloading pytorch_model.bin:  15%|█▍        | 388M/2.63G [00:07<00:43, 51.9MB/s]
Downloading pytorch_model.bin:  15%|█▌        | 398M/2.63G [00:07<00:44, 50.2MB/s]
Downloading pytorch_model.bin:  16%|█▌        | 409M/2.63G [00:08<00:45, 49.0MB/s]
Downloading pytorch_model.bin:  16%|█▌        | 419M/2.63G [00:08<00:44, 49.8MB/s]
Downloading pytorch_model.bin:  16%|█▋        | 430M/2.63G [00:08<00:42, 52.0MB/s]
Downloading pytorch_model.bin:  17%|█▋        | 440M/2.63G [00:08<00:39, 55.4MB/s]
Downloading pytorch_model.bin:  17%|█▋        | 451M/2.63G [00:08<00:38, 57.3MB/s]
Downloading pytorch_model.bin:  18%|█▊        | 461M/2.63G [00:09<00:38, 56.7MB/s]
Downloading pytorch_model.bin:  18%|█▊        | 472M/2.63G [00:09<00:38, 55.7MB/s]
Downloading pytorch_model.bin:  18%|█▊        | 482M/2.63G [00:09<00:38, 55.4MB/s]
Downloading pytorch_model.bin:  19%|█▊        | 493M/2.63G [00:09<00:39, 53.5MB/s]
Downloading pytorch_model.bin:  19%|█▉        | 503M/2.63G [00:09<00:39, 54.3MB/s]
Downloading pytorch_model.bin:  20%|█▉        | 514M/2.63G [00:10<00:39, 54.0MB/s]
Downloading pytorch_model.bin:  20%|█▉        | 524M/2.63G [00:10<00:39, 53.8MB/s]
Downloading pytorch_model.bin:  20%|██        | 535M/2.63G [00:10<00:39, 53.6MB/s]
Downloading pytorch_model.bin:  21%|██        | 545M/2.63G [00:10<00:39, 53.1MB/s]
Downloading pytorch_model.bin:  21%|██        | 556M/2.63G [00:10<00:39, 52.9MB/s]
Downloading pytorch_model.bin:  22%|██▏       | 566M/2.63G [00:11<00:39, 52.7MB/s]
Downloading pytorch_model.bin:  22%|██▏       | 577M/2.63G [00:11<00:39, 52.5MB/s]
Downloading pytorch_model.bin:  22%|██▏       | 587M/2.63G [00:11<00:38, 52.5MB/s]
Downloading pytorch_model.bin:  23%|██▎       | 598M/2.63G [00:11<00:39, 52.0MB/s]
Downloading pytorch_model.bin:  23%|██▎       | 608M/2.63G [00:11<00:38, 51.9MB/s]
Downloading pytorch_model.bin:  24%|██▎       | 619M/2.63G [00:12<00:38, 51.8MB/s]
Downloading pytorch_model.bin:  24%|██▍       | 629M/2.63G [00:12<00:39, 50.3MB/s]
Downloading pytorch_model.bin:  24%|██▍       | 640M/2.63G [00:12<00:39, 50.1MB/s]
Downloading pytorch_model.bin:  25%|██▍       | 650M/2.63G [00:12<00:39, 50.8MB/s]
Downloading pytorch_model.bin:  25%|██▌       | 661M/2.63G [00:12<00:38, 50.8MB/s]
Downloading pytorch_model.bin:  26%|██▌       | 671M/2.63G [00:13<00:38, 51.3MB/s]
Downloading pytorch_model.bin:  26%|██▌       | 682M/2.63G [00:13<00:37, 51.5MB/s]
Downloading pytorch_model.bin:  26%|██▋       | 692M/2.63G [00:13<00:37, 51.5MB/s]
Downloading pytorch_model.bin:  27%|██▋       | 703M/2.63G [00:13<00:37, 51.7MB/s]
Downloading pytorch_model.bin:  27%|██▋       | 713M/2.63G [00:13<00:36, 52.6MB/s]
Downloading pytorch_model.bin:  27%|██▋       | 724M/2.63G [00:14<00:35, 53.8MB/s]
Downloading pytorch_model.bin:  28%|██▊       | 734M/2.63G [00:14<00:34, 54.9MB/s]
Downloading pytorch_model.bin:  28%|██▊       | 744M/2.63G [00:14<00:33, 55.6MB/s]
Downloading pytorch_model.bin:  29%|██▊       | 755M/2.63G [00:14<00:33, 55.3MB/s]
Downloading pytorch_model.bin:  29%|██▉       | 765M/2.63G [00:14<00:34, 54.0MB/s]
Downloading pytorch_model.bin:  29%|██▉       | 776M/2.63G [00:15<00:34, 54.0MB/s]
Downloading pytorch_model.bin:  30%|██▉       | 786M/2.63G [00:15<00:33, 55.0MB/s]
Downloading pytorch_model.bin:  30%|███       | 797M/2.63G [00:15<00:33, 55.3MB/s]
Downloading pytorch_model.bin:  31%|███       | 807M/2.63G [00:15<00:32, 56.2MB/s]
Downloading pytorch_model.bin:  31%|███       | 818M/2.63G [00:15<00:31, 58.2MB/s]
Downloading pytorch_model.bin:  31%|███▏      | 828M/2.63G [00:15<00:31, 56.8MB/s]
Downloading pytorch_model.bin:  32%|███▏      | 839M/2.63G [00:16<00:32, 56.0MB/s]
Downloading pytorch_model.bin:  32%|███▏      | 849M/2.63G [00:16<00:31, 56.8MB/s]
Downloading pytorch_model.bin:  33%|███▎      | 860M/2.63G [00:16<00:30, 58.2MB/s]
Downloading pytorch_model.bin:  33%|███▎      | 870M/2.63G [00:16<00:30, 58.6MB/s]
Downloading pytorch_model.bin:  33%|███▎      | 881M/2.63G [00:16<00:30, 56.6MB/s]
Downloading pytorch_model.bin:  34%|███▍      | 891M/2.63G [00:17<00:31, 55.5MB/s]
Downloading pytorch_model.bin:  34%|███▍      | 902M/2.63G [00:17<00:31, 55.8MB/s]
Downloading pytorch_model.bin:  35%|███▍      | 912M/2.63G [00:17<00:30, 56.4MB/s]
Downloading pytorch_model.bin:  35%|███▌      | 923M/2.63G [00:17<00:30, 56.0MB/s]
Downloading pytorch_model.bin:  35%|███▌      | 933M/2.63G [00:17<00:30, 55.4MB/s]
Downloading pytorch_model.bin:  36%|███▌      | 944M/2.63G [00:18<00:30, 55.1MB/s]
Downloading pytorch_model.bin:  36%|███▋      | 954M/2.63G [00:18<00:29, 56.3MB/s]
Downloading pytorch_model.bin:  37%|███▋      | 965M/2.63G [00:18<00:28, 57.7MB/s]
Downloading pytorch_model.bin:  37%|███▋      | 975M/2.63G [00:18<00:29, 57.0MB/s]
Downloading pytorch_model.bin:  37%|███▋      | 986M/2.63G [00:18<00:28, 57.0MB/s]
Downloading pytorch_model.bin:  38%|███▊      | 996M/2.63G [00:18<00:27, 59.5MB/s]
Downloading pytorch_model.bin:  38%|███▊      | 1.01G/2.63G [00:19<00:26, 61.6MB/s]
Downloading pytorch_model.bin:  39%|███▊      | 1.02G/2.63G [00:19<00:25, 62.4MB/s]
Downloading pytorch_model.bin:  39%|███▉      | 1.03G/2.63G [00:19<00:25, 63.3MB/s]
Downloading pytorch_model.bin:  39%|███▉      | 1.04G/2.63G [00:19<00:24, 64.3MB/s]
Downloading pytorch_model.bin:  40%|███▉      | 1.05G/2.63G [00:19<00:24, 65.0MB/s]
Downloading pytorch_model.bin:  40%|████      | 1.06G/2.63G [00:19<00:24, 64.6MB/s]
Downloading pytorch_model.bin:  41%|████      | 1.07G/2.63G [00:19<00:23, 65.2MB/s]
Downloading pytorch_model.bin:  41%|████      | 1.08G/2.63G [00:20<00:24, 63.0MB/s]
Downloading pytorch_model.bin:  41%|████▏     | 1.09G/2.63G [00:20<00:25, 59.6MB/s]
Downloading pytorch_model.bin:  42%|████▏     | 1.10G/2.63G [00:20<00:26, 58.8MB/s]
Downloading pytorch_model.bin:  42%|████▏     | 1.11G/2.63G [00:20<00:25, 58.5MB/s]
Downloading pytorch_model.bin:  43%|████▎     | 1.12G/2.63G [00:20<00:26, 57.9MB/s]
Downloading pytorch_model.bin:  43%|████▎     | 1.13G/2.63G [00:21<00:26, 57.5MB/s]
Downloading pytorch_model.bin:  43%|████▎     | 1.14G/2.63G [00:21<00:25, 57.5MB/s]
Downloading pytorch_model.bin:  44%|████▍     | 1.15G/2.63G [00:21<00:26, 55.7MB/s]
Downloading pytorch_model.bin:  44%|████▍     | 1.16G/2.63G [00:21<00:26, 55.5MB/s]
Downloading pytorch_model.bin:  45%|████▍     | 1.17G/2.63G [00:21<00:25, 56.1MB/s]
Downloading pytorch_model.bin:  45%|████▌     | 1.18G/2.63G [00:22<00:25, 56.7MB/s]
Downloading pytorch_model.bin:  45%|████▌     | 1.20G/2.63G [00:22<00:25, 57.1MB/s]
Downloading pytorch_model.bin:  46%|████▌     | 1.21G/2.63G [00:22<00:25, 56.4MB/s]
Downloading pytorch_model.bin:  46%|████▌     | 1.22G/2.63G [00:22<00:24, 57.1MB/s]
Downloading pytorch_model.bin:  47%|████▋     | 1.23G/2.63G [00:22<00:24, 56.6MB/s]
Downloading pytorch_model.bin:  47%|████▋     | 1.24G/2.63G [00:22<00:24, 56.3MB/s]
Downloading pytorch_model.bin:  47%|████▋     | 1.25G/2.63G [00:23<00:23, 58.4MB/s]
Downloading pytorch_model.bin:  48%|████▊     | 1.26G/2.63G [00:23<00:22, 60.6MB/s]
Downloading pytorch_model.bin:  48%|████▊     | 1.27G/2.63G [00:23<00:22, 61.9MB/s]
Downloading pytorch_model.bin:  49%|████▊     | 1.28G/2.63G [00:23<00:21, 63.2MB/s]
Downloading pytorch_model.bin:  49%|████▉     | 1.29G/2.63G [00:23<00:20, 64.3MB/s]
Downloading pytorch_model.bin:  49%|████▉     | 1.30G/2.63G [00:23<00:20, 64.4MB/s]
Downloading pytorch_model.bin:  50%|████▉     | 1.31G/2.63G [00:24<00:20, 64.9MB/s]
Downloading pytorch_model.bin:  50%|█████     | 1.32G/2.63G [00:24<00:20, 64.6MB/s]
Downloading pytorch_model.bin:  51%|█████     | 1.33G/2.63G [00:24<00:21, 61.5MB/s]
Downloading pytorch_model.bin:  51%|█████     | 1.34G/2.63G [00:24<00:21, 59.9MB/s]
Downloading pytorch_model.bin:  51%|█████▏    | 1.35G/2.63G [00:24<00:21, 58.7MB/s]
Downloading pytorch_model.bin:  52%|█████▏    | 1.36G/2.63G [00:25<00:22, 57.6MB/s]
Downloading pytorch_model.bin:  52%|█████▏    | 1.37G/2.63G [00:25<00:22, 56.0MB/s]
Downloading pytorch_model.bin:  53%|█████▎    | 1.38G/2.63G [00:25<00:21, 57.4MB/s]
Downloading pytorch_model.bin:  53%|█████▎    | 1.39G/2.63G [00:25<00:22, 56.2MB/s]
Downloading pytorch_model.bin:  53%|█████▎    | 1.41G/2.63G [00:25<00:22, 55.2MB/s]
Downloading pytorch_model.bin:  54%|█████▍    | 1.42G/2.63G [00:25<00:21, 56.4MB/s]
Downloading pytorch_model.bin:  54%|█████▍    | 1.43G/2.63G [00:26<00:21, 56.6MB/s]
Downloading pytorch_model.bin:  55%|█████▍    | 1.44G/2.63G [00:26<00:21, 56.5MB/s]
Downloading pytorch_model.bin:  55%|█████▍    | 1.45G/2.63G [00:26<00:21, 55.7MB/s]
Downloading pytorch_model.bin:  55%|█████▌    | 1.46G/2.63G [00:26<00:29, 39.8MB/s]
Downloading pytorch_model.bin:  56%|█████▌    | 1.47G/2.63G [00:27<00:26, 43.7MB/s]
Downloading pytorch_model.bin:  56%|█████▌    | 1.48G/2.63G [00:27<00:24, 46.7MB/s]
Downloading pytorch_model.bin:  57%|█████▋    | 1.49G/2.63G [00:27<00:23, 49.3MB/s]
Downloading pytorch_model.bin:  57%|█████▋    | 1.50G/2.63G [00:27<00:22, 51.0MB/s]
Downloading pytorch_model.bin:  57%|█████▋    | 1.51G/2.63G [00:27<00:21, 51.7MB/s]
Downloading pytorch_model.bin:  58%|█████▊    | 1.52G/2.63G [00:28<00:21, 51.9MB/s]
Downloading pytorch_model.bin:  58%|█████▊    | 1.53G/2.63G [00:28<00:20, 54.8MB/s]
Downloading pytorch_model.bin:  59%|█████▊    | 1.54G/2.63G [00:28<00:18, 58.4MB/s]
Downloading pytorch_model.bin:  59%|█████▉    | 1.55G/2.63G [00:28<00:18, 57.4MB/s]
Downloading pytorch_model.bin:  59%|█████▉    | 1.56G/2.63G [00:28<00:18, 58.9MB/s]
Downloading pytorch_model.bin:  60%|█████▉    | 1.57G/2.63G [00:28<00:18, 57.2MB/s]
Downloading pytorch_model.bin:  60%|██████    | 1.58G/2.63G [00:29<00:18, 56.0MB/s]
Downloading pytorch_model.bin:  61%|██████    | 1.59G/2.63G [00:29<00:18, 57.1MB/s]
Downloading pytorch_model.bin:  61%|██████    | 1.60G/2.63G [00:29<00:17, 57.3MB/s]
Downloading pytorch_model.bin:  61%|██████▏   | 1.61G/2.63G [00:29<00:17, 56.5MB/s]
Downloading pytorch_model.bin:  62%|██████▏   | 1.63G/2.63G [00:29<00:18, 55.5MB/s]
Downloading pytorch_model.bin:  62%|██████▏   | 1.64G/2.63G [00:30<00:17, 58.5MB/s]
Downloading pytorch_model.bin:  63%|██████▎   | 1.65G/2.63G [00:30<00:16, 58.1MB/s]
Downloading pytorch_model.bin:  63%|██████▎   | 1.66G/2.63G [00:30<00:17, 57.0MB/s]
Downloading pytorch_model.bin:  63%|██████▎   | 1.67G/2.63G [00:30<00:17, 56.5MB/s]
Downloading pytorch_model.bin:  64%|██████▍   | 1.68G/2.63G [00:30<00:17, 55.6MB/s]
Downloading pytorch_model.bin:  64%|██████▍   | 1.69G/2.63G [00:31<00:17, 55.3MB/s]
Downloading pytorch_model.bin:  65%|██████▍   | 1.70G/2.63G [00:31<00:16, 56.0MB/s]
Downloading pytorch_model.bin:  65%|██████▍   | 1.71G/2.63G [00:31<00:16, 56.6MB/s]
Downloading pytorch_model.bin:  65%|██████▌   | 1.72G/2.63G [00:31<00:16, 56.7MB/s]
Downloading pytorch_model.bin:  66%|██████▌   | 1.73G/2.63G [00:31<00:16, 55.2MB/s]
Downloading pytorch_model.bin:  66%|██████▌   | 1.74G/2.63G [00:31<00:15, 56.0MB/s]
Downloading pytorch_model.bin:  67%|██████▋   | 1.75G/2.63G [00:32<00:15, 56.7MB/s]
Downloading pytorch_model.bin:  67%|██████▋   | 1.76G/2.63G [00:32<00:15, 56.3MB/s]
Downloading pytorch_model.bin:  67%|██████▋   | 1.77G/2.63G [00:32<00:15, 56.8MB/s]
Downloading pytorch_model.bin:  68%|██████▊   | 1.78G/2.63G [00:32<00:15, 56.5MB/s]
Downloading pytorch_model.bin:  68%|██████▊   | 1.79G/2.63G [00:32<00:14, 56.7MB/s]
Downloading pytorch_model.bin:  69%|██████▊   | 1.80G/2.63G [00:33<00:14, 55.3MB/s]
Downloading pytorch_model.bin:  69%|██████▉   | 1.81G/2.63G [00:33<00:14, 55.4MB/s]
Downloading pytorch_model.bin:  69%|██████▉   | 1.82G/2.63G [00:33<00:14, 55.9MB/s]
Downloading pytorch_model.bin:  70%|██████▉   | 1.84G/2.63G [00:33<00:13, 58.7MB/s]
Downloading pytorch_model.bin:  70%|███████   | 1.85G/2.63G [00:33<00:12, 60.7MB/s]
Downloading pytorch_model.bin:  71%|███████   | 1.86G/2.63G [00:33<00:12, 62.2MB/s]
Downloading pytorch_model.bin:  71%|███████   | 1.87G/2.63G [00:34<00:12, 61.3MB/s]
Downloading pytorch_model.bin:  71%|███████▏  | 1.88G/2.63G [00:34<00:12, 60.5MB/s]
Downloading pytorch_model.bin:  72%|███████▏  | 1.89G/2.63G [00:34<00:12, 59.1MB/s]
Downloading pytorch_model.bin:  72%|███████▏  | 1.90G/2.63G [00:34<00:12, 58.6MB/s]
Downloading pytorch_model.bin:  73%|███████▎  | 1.91G/2.63G [00:34<00:12, 59.5MB/s]
Downloading pytorch_model.bin:  73%|███████▎  | 1.92G/2.63G [00:34<00:11, 61.3MB/s]
Downloading pytorch_model.bin:  73%|███████▎  | 1.93G/2.63G [00:35<00:11, 60.6MB/s]
Downloading pytorch_model.bin:  74%|███████▎  | 1.94G/2.63G [00:35<00:10, 63.3MB/s]
Downloading pytorch_model.bin:  74%|███████▍  | 1.95G/2.63G [00:35<00:10, 65.3MB/s]
Downloading pytorch_model.bin:  75%|███████▍  | 1.96G/2.63G [00:35<00:10, 64.7MB/s]
Downloading pytorch_model.bin:  75%|███████▍  | 1.97G/2.63G [00:35<00:10, 62.6MB/s]
Downloading pytorch_model.bin:  75%|███████▌  | 1.98G/2.63G [00:35<00:10, 61.0MB/s]
Downloading pytorch_model.bin:  76%|███████▌  | 1.99G/2.63G [00:36<00:10, 59.1MB/s]
Downloading pytorch_model.bin:  76%|███████▌  | 2.00G/2.63G [00:36<00:11, 56.9MB/s]
Downloading pytorch_model.bin:  77%|███████▋  | 2.01G/2.63G [00:36<00:10, 56.6MB/s]
Downloading pytorch_model.bin:  77%|███████▋  | 2.02G/2.63G [00:36<00:10, 57.2MB/s]
Downloading pytorch_model.bin:  77%|███████▋  | 2.03G/2.63G [00:36<00:10, 57.4MB/s]
Downloading pytorch_model.bin:  78%|███████▊  | 2.04G/2.63G [00:37<00:09, 59.5MB/s]
Downloading pytorch_model.bin:  78%|███████▊  | 2.06G/2.63G [00:37<00:09, 61.3MB/s]
Downloading pytorch_model.bin:  78%|███████▊  | 2.07G/2.63G [00:37<00:09, 62.7MB/s]
Downloading pytorch_model.bin:  79%|███████▉  | 2.08G/2.63G [00:37<00:08, 64.0MB/s]
Downloading pytorch_model.bin:  79%|███████▉  | 2.09G/2.63G [00:37<00:08, 63.6MB/s]
Downloading pytorch_model.bin:  80%|███████▉  | 2.10G/2.63G [00:37<00:08, 64.8MB/s]
Downloading pytorch_model.bin:  80%|████████  | 2.11G/2.63G [00:38<00:08, 65.3MB/s]
Downloading pytorch_model.bin:  80%|████████  | 2.12G/2.63G [00:38<00:07, 64.7MB/s]
Downloading pytorch_model.bin:  81%|████████  | 2.13G/2.63G [00:38<00:07, 65.5MB/s]
Downloading pytorch_model.bin:  81%|████████▏ | 2.14G/2.63G [00:38<00:11, 42.7MB/s]
Downloading pytorch_model.bin:  82%|████████▏ | 2.15G/2.63G [00:38<00:10, 47.3MB/s]
Downloading pytorch_model.bin:  82%|████████▏ | 2.16G/2.63G [00:39<00:09, 50.6MB/s]
Downloading pytorch_model.bin:  82%|████████▏ | 2.17G/2.63G [00:39<00:08, 52.0MB/s]
Downloading pytorch_model.bin:  83%|████████▎ | 2.18G/2.63G [00:39<00:08, 52.6MB/s]
Downloading pytorch_model.bin:  83%|████████▎ | 2.19G/2.63G [00:39<00:08, 52.7MB/s]
Downloading pytorch_model.bin:  84%|████████▎ | 2.20G/2.63G [00:39<00:08, 53.2MB/s]
Downloading pytorch_model.bin:  84%|████████▍ | 2.21G/2.63G [00:40<00:07, 53.2MB/s]
Downloading pytorch_model.bin:  84%|████████▍ | 2.22G/2.63G [00:40<00:07, 53.3MB/s]
Downloading pytorch_model.bin:  85%|████████▍ | 2.23G/2.63G [00:40<00:07, 54.2MB/s]
Downloading pytorch_model.bin:  85%|████████▌ | 2.24G/2.63G [00:40<00:07, 54.7MB/s]
Downloading pytorch_model.bin:  86%|████████▌ | 2.25G/2.63G [00:40<00:06, 55.2MB/s]
Downloading pytorch_model.bin:  86%|████████▌ | 2.26G/2.63G [00:41<00:06, 54.2MB/s]
Downloading pytorch_model.bin:  86%|████████▋ | 2.28G/2.63G [00:41<00:06, 54.6MB/s]
Downloading pytorch_model.bin:  87%|████████▋ | 2.29G/2.63G [00:41<00:06, 54.8MB/s]
Downloading pytorch_model.bin:  87%|████████▋ | 2.30G/2.63G [00:41<00:06, 54.6MB/s]
Downloading pytorch_model.bin:  88%|████████▊ | 2.31G/2.63G [00:41<00:05, 54.7MB/s]
Downloading pytorch_model.bin:  88%|████████▊ | 2.32G/2.63G [00:42<00:05, 54.8MB/s]
Downloading pytorch_model.bin:  88%|████████▊ | 2.33G/2.63G [00:42<00:05, 55.0MB/s]
Downloading pytorch_model.bin:  89%|████████▉ | 2.34G/2.63G [00:42<00:05, 55.3MB/s]
Downloading pytorch_model.bin:  89%|████████▉ | 2.35G/2.63G [00:42<00:05, 55.4MB/s]
Downloading pytorch_model.bin:  90%|████████▉ | 2.36G/2.63G [00:42<00:04, 55.8MB/s]
Downloading pytorch_model.bin:  90%|█████████ | 2.37G/2.63G [00:42<00:04, 55.6MB/s]
Downloading pytorch_model.bin:  90%|█████████ | 2.38G/2.63G [00:43<00:04, 55.3MB/s]
Downloading pytorch_model.bin:  91%|█████████ | 2.39G/2.63G [00:43<00:04, 54.9MB/s]
Downloading pytorch_model.bin:  91%|█████████ | 2.40G/2.63G [00:43<00:04, 55.8MB/s]
Downloading pytorch_model.bin:  92%|█████████▏| 2.41G/2.63G [00:43<00:03, 58.8MB/s]
Downloading pytorch_model.bin:  92%|█████████▏| 2.42G/2.63G [00:43<00:03, 60.0MB/s]
Downloading pytorch_model.bin:  92%|█████████▏| 2.43G/2.63G [00:44<00:03, 61.9MB/s]
Downloading pytorch_model.bin:  93%|█████████▎| 2.44G/2.63G [00:44<00:03, 58.7MB/s]
Downloading pytorch_model.bin:  93%|█████████▎| 2.45G/2.63G [00:44<00:03, 57.4MB/s]
Downloading pytorch_model.bin:  94%|█████████▎| 2.46G/2.63G [00:44<00:02, 59.4MB/s]
Downloading pytorch_model.bin:  94%|█████████▍| 2.47G/2.63G [00:44<00:02, 58.3MB/s]
Downloading pytorch_model.bin:  94%|█████████▍| 2.49G/2.63G [00:44<00:02, 58.3MB/s]
Downloading pytorch_model.bin:  95%|█████████▍| 2.50G/2.63G [00:45<00:02, 58.2MB/s]
Downloading pytorch_model.bin:  95%|█████████▌| 2.51G/2.63G [00:45<00:02, 57.6MB/s]
Downloading pytorch_model.bin:  96%|█████████▌| 2.52G/2.63G [00:45<00:01, 57.9MB/s]
Downloading pytorch_model.bin:  96%|█████████▌| 2.53G/2.63G [00:45<00:01, 57.1MB/s]
Downloading pytorch_model.bin:  96%|█████████▋| 2.54G/2.63G [00:45<00:01, 57.1MB/s]
Downloading pytorch_model.bin:  97%|█████████▋| 2.55G/2.63G [00:46<00:01, 55.8MB/s]
Downloading pytorch_model.bin:  97%|█████████▋| 2.56G/2.63G [00:46<00:01, 56.4MB/s]
Downloading pytorch_model.bin:  98%|█████████▊| 2.57G/2.63G [00:46<00:01, 56.7MB/s]
Downloading pytorch_model.bin:  98%|█████████▊| 2.58G/2.63G [00:46<00:00, 56.9MB/s]
Downloading pytorch_model.bin:  98%|█████████▊| 2.59G/2.63G [00:46<00:00, 56.4MB/s]
Downloading pytorch_model.bin:  99%|█████████▉| 2.60G/2.63G [00:46<00:00, 56.2MB/s]
Downloading pytorch_model.bin:  99%|█████████▉| 2.61G/2.63G [00:47<00:00, 56.5MB/s]
Downloading pytorch_model.bin: 100%|█████████▉| 2.62G/2.63G [00:47<00:00, 56.6MB/s]
Downloading pytorch_model.bin: 100%|██████████| 2.63G/2.63G [00:47<00:00, 55.6MB/s]
Downloading pytorch_model.bin: 100%|██████████| 2.63G/2.63G [00:47<00:00, 55.4MB/s]

Downloading (…)neration_config.json:   0%|          | 0.00/137 [00:00<?, ?B/s]
Downloading (…)neration_config.json: 100%|██████████| 137/137 [00:00<00:00, 8.19kB/s]

Downloading metadata:   0%|          | 0.00/926 [00:00<?, ?B/s]
Downloading metadata: 100%|██████████| 926/926 [00:00<00:00, 391kB/s]

Downloading readme:   0%|          | 0.00/530 [00:00<?, ?B/s]
Downloading readme: 100%|██████████| 530/530 [00:00<00:00, 242kB/s]
Downloading and preparing dataset None/None to /root/.cache/huggingface/datasets/Dahoas___parquet/default-b9d2c4937d617106/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec...

Downloading data files:   0%|          | 0/2 [00:00<?, ?it/s]

Downloading data:   0%|          | 0.00/4.61M [00:00<?, ?B/s]

Downloading data:   2%|▏         | 97.3k/4.61M [00:00<00:04, 912kB/s]

Downloading data:  12%|█▏        | 574k/4.61M [00:00<00:01, 3.12MB/s]

Downloading data:  25%|██▌       | 1.16M/4.61M [00:00<00:00, 3.61MB/s]

Downloading data:  33%|███▎      | 1.54M/4.61M [00:00<00:01, 2.41MB/s]

Downloading data:  79%|███████▉  | 3.64M/4.61M [00:00<00:00, 6.94MB/s]

Downloading data:  99%|█████████▊| 4.55M/4.61M [00:00<00:00, 6.60MB/s]
Downloading data: 100%|██████████| 4.61M/4.61M [00:00<00:00, 5.31MB/s]

Downloading data files:  50%|█████     | 1/2 [00:02<00:02,  2.85s/it]

Downloading data:   0%|          | 0.00/68.4M [00:00<?, ?B/s]

Downloading data:   0%|          | 82.9k/68.4M [00:00<01:22, 825kB/s]

Downloading data:   1%|          | 540k/68.4M [00:00<00:22, 3.01MB/s]

Downloading data:   4%|▍         | 2.84M/68.4M [00:00<00:05, 12.1MB/s]

Downloading data:  14%|█▍        | 9.52M/68.4M [00:00<00:01, 33.7MB/s]

Downloading data:  24%|██▍       | 16.7M/68.4M [00:00<00:01, 47.4MB/s]

Downloading data:  34%|███▍      | 23.5M/68.4M [00:00<00:00, 54.3MB/s]

Downloading data:  45%|████▌     | 30.8M/68.4M [00:00<00:00, 60.5MB/s]

Downloading data:  55%|█████▌    | 37.9M/68.4M [00:00<00:00, 63.8MB/s]

Downloading data:  66%|██████▌   | 45.1M/68.4M [00:00<00:00, 66.4MB/s]

Downloading data:  76%|███████▋  | 52.3M/68.4M [00:01<00:00, 68.0MB/s]

Downloading data:  87%|████████▋ | 59.5M/68.4M [00:01<00:00, 69.3MB/s]

Downloading data:  97%|█████████▋| 66.6M/68.4M [00:01<00:00, 69.8MB/s]
Downloading data: 100%|██████████| 68.4M/68.4M [00:01<00:00, 55.6MB/s]

Downloading data files: 100%|██████████| 2/2 [00:06<00:00,  3.07s/it]
Downloading data files: 100%|██████████| 2/2 [00:06<00:00,  3.04s/it]

Extracting data files:   0%|          | 0/2 [00:00<?, ?it/s]
Extracting data files: 100%|██████████| 2/2 [00:00<00:00, 1741.46it/s]

Generating test split:   0%|          | 0/5103 [00:00<?, ? examples/s]
                                                                      

Generating train split:   0%|          | 0/76256 [00:00<?, ? examples/s]
Generating train split:  52%|█████▏    | 40000/76256 [00:00<00:00, 249465.69 examples/s]
Generating train split:  92%|█████████▏| 70000/76256 [00:00<00:00, 223221.40 examples/s]
                                                                                        
Dataset parquet downloaded and prepared to /root/.cache/huggingface/datasets/Dahoas___parquet/default-b9d2c4937d617106/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec. Subsequent calls will reuse this data.

  0%|          | 0/2 [00:00<?, ?it/s]
100%|██████████| 2/2 [00:00<00:00, 208.87it/s]
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
	- Avoid using `tokenizers` before the fork if possible
	- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
	- Avoid using `tokenizers` before the fork if possible
	- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
	- Avoid using `tokenizers` before the fork if possible
	- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
	- Avoid using `tokenizers` before the fork if possible
	- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Using /root/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
Creating extension directory /root/.cache/torch_extensions/py38_cu117/fused_adam...
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
	- Avoid using `tokenizers` before the fork if possible
	- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
	- Avoid using `tokenizers` before the fork if possible
	- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
	- Avoid using `tokenizers` before the fork if possible
	- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Detected CUDA files, patching ldflags
Emitting ninja build file /root/.cache/torch_extensions/py38_cu117/fused_adam/build.ninja...
Building extension module fused_adam...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
	- Avoid using `tokenizers` before the fork if possible
	- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
[1/3] /usr/local/cuda/bin/nvcc  -DTORCH_EXTENSION_NAME=fused_adam -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -I/usr/local/lib/python3.8/site-packages/deepspeed/ops/csrc/includes -I/usr/local/lib/python3.8/site-packages/deepspeed/ops/csrc/adam -isystem /usr/local/lib/python3.8/site-packages/torch/include -isystem /usr/local/lib/python3.8/site-packages/torch/include/torch/csrc/api/include -isystem /usr/local/lib/python3.8/site-packages/torch/include/TH -isystem /usr/local/lib/python3.8/site-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /usr/local/include/python3.8 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_80,code=sm_80 --compiler-options '-fPIC' -O3 -DVERSION_GE_1_1 -DVERSION_GE_1_3 -DVERSION_GE_1_5 -lineinfo --use_fast_math -gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_80,code=compute_80 -std=c++14 -c /usr/local/lib/python3.8/site-packages/deepspeed/ops/csrc/adam/multi_tensor_adam.cu -o multi_tensor_adam.cuda.o 
[2/3] c++ -MMD -MF fused_adam_frontend.o.d -DTORCH_EXTENSION_NAME=fused_adam -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -I/usr/local/lib/python3.8/site-packages/deepspeed/ops/csrc/includes -I/usr/local/lib/python3.8/site-packages/deepspeed/ops/csrc/adam -isystem /usr/local/lib/python3.8/site-packages/torch/include -isystem /usr/local/lib/python3.8/site-packages/torch/include/torch/csrc/api/include -isystem /usr/local/lib/python3.8/site-packages/torch/include/TH -isystem /usr/local/lib/python3.8/site-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /usr/local/include/python3.8 -D_GLIBCXX_USE_CXX11_ABI=0 -fPIC -std=c++14 -O3 -std=c++14 -g -Wno-reorder -DVERSION_GE_1_1 -DVERSION_GE_1_3 -DVERSION_GE_1_5 -c /usr/local/lib/python3.8/site-packages/deepspeed/ops/csrc/adam/fused_adam_frontend.cpp -o fused_adam_frontend.o 
[3/3] c++ fused_adam_frontend.o multi_tensor_adam.cuda.o -shared -L/usr/local/lib/python3.8/site-packages/torch/lib -lc10 -lc10_cuda -ltorch_cpu -ltorch_cuda_cu -ltorch_cuda_cpp -ltorch -ltorch_python -L/usr/local/cuda/lib64 -lcudart -o fused_adam.so
Loading extension module fused_adam...
Time to load fused_adam op: 21.613110065460205 seconds
[2023-04-14 07:00:27,708] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed info: version=0.9.0, git-hash=unknown, git-branch=unknown
[2023-04-14 07:00:27,713] [INFO] [comm.py:580:init_distributed] Distributed backend already initialized
[2023-04-14 07:00:29,668] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Flops Profiler Enabled: False
[2023-04-14 07:00:29,669] [INFO] [logging.py:96:log_dist] [Rank 0] Removing param_group that has no 'params' in the client Optimizer
[2023-04-14 07:00:29,669] [INFO] [logging.py:96:log_dist] [Rank 0] Using client Optimizer as basic optimizer
[2023-04-14 07:00:29,695] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Basic Optimizer = FusedAdam
[2023-04-14 07:00:29,695] [INFO] [logging.py:96:log_dist] [Rank 0] Creating fp16 optimizer with dynamic loss scale
[2023-04-14 07:00:29,717] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Final Optimizer = FusedAdam
[2023-04-14 07:00:29,717] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed using client LR scheduler
[2023-04-14 07:00:29,717] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed LR Scheduler = <torch.optim.lr_scheduler.LambdaLR object at 0x7fd0a0fe5310>
[2023-04-14 07:00:29,718] [INFO] [logging.py:96:log_dist] [Rank 0] step=0, skipped=0, lr=[0.001, 0.001], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:00:29,718] [INFO] [config.py:953:print] DeepSpeedEngine configuration:
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   activation_checkpointing_config  {
    "partition_activations": false, 
    "contiguous_memory_optimization": false, 
    "cpu_checkpointing": false, 
    "number_checkpoints": null, 
    "synchronize_checkpoint_boundary": false, 
    "profile": false
}
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   aio_config ................... {'block_size': 1048576, 'queue_depth': 8, 'thread_count': 1, 'single_submit': False, 'overlap_events': True}
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   amp_enabled .................. False
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   amp_params ................... False
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   autotuning_config ............ {
    "enabled": false, 
    "start_step": null, 
    "end_step": null, 
    "metric_path": null, 
    "arg_mappings": null, 
    "metric": "throughput", 
    "model_info": null, 
    "results_dir": "autotuning_results", 
    "exps_dir": "autotuning_exps", 
    "overwrite": true, 
    "fast": true, 
    "start_profile_step": 3, 
    "end_profile_step": 5, 
    "tuner_type": "gridsearch", 
    "tuner_early_stopping": 5, 
    "tuner_num_trials": 50, 
    "model_info_path": null, 
    "mp_size": 1, 
    "max_train_batch_size": null, 
    "min_train_batch_size": 1, 
    "max_train_micro_batch_size_per_gpu": 1.024000e+03, 
    "min_train_micro_batch_size_per_gpu": 1, 
    "num_tuning_micro_batch_sizes": 3
}
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   bfloat16_enabled ............. False
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   checkpoint_parallel_write_pipeline  False
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   checkpoint_tag_validation_enabled  True
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   checkpoint_tag_validation_fail  False
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   comms_config ................. <deepspeed.comm.config.DeepSpeedCommsConfig object at 0x7fd010dcb790>
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   communication_data_type ...... None
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   compression_config ........... {'weight_quantization': {'shared_parameters': {'enabled': False, 'quantizer_kernel': False, 'schedule_offset': 0, 'quantize_groups': 1, 'quantize_verbose': False, 'quantization_type': 'symmetric', 'quantize_weight_in_forward': False, 'rounding': 'nearest', 'fp16_mixed_quantize': False, 'quantize_change_ratio': 0.001}, 'different_groups': {}}, 'activation_quantization': {'shared_parameters': {'enabled': False, 'quantization_type': 'symmetric', 'range_calibration': 'dynamic', 'schedule_offset': 1000}, 'different_groups': {}}, 'sparse_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'row_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'head_pruning': {'shared_parameters': {'enabled': False, 'method': 'topk', 'schedule_offset': 1000}, 'different_groups': {}}, 'channel_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'layer_reduction': {'enabled': False}}
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   curriculum_enabled_legacy .... False
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   curriculum_params_legacy ..... False
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   data_efficiency_config ....... {'enabled': False, 'seed': 1234, 'data_sampling': {'enabled': False, 'num_epochs': 1000, 'num_workers': 0, 'curriculum_learning': {'enabled': False}}, 'data_routing': {'enabled': False, 'random_ltd': {'enabled': False, 'layer_token_lr_schedule': {'enabled': False}}}}
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   data_efficiency_enabled ...... False
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   dataloader_drop_last ......... False
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   disable_allgather ............ False
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   dump_state ................... False
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   dynamic_loss_scale_args ...... {'init_scale': 65536, 'scale_window': 100, 'delayed_shift': 2, 'min_scale': 1}
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   eigenvalue_enabled ........... False
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   eigenvalue_gas_boundary_resolution  1
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   eigenvalue_layer_name ........ bert.encoder.layer
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   eigenvalue_layer_num ......... 0
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   eigenvalue_max_iter .......... 100
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   eigenvalue_stability ......... 1e-06
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   eigenvalue_tol ............... 0.01
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   eigenvalue_verbose ........... False
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   elasticity_enabled ........... False
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   flops_profiler_config ........ {
    "enabled": false, 
    "profile_step": 1, 
    "module_depth": -1, 
    "top_modules": 1, 
    "detailed": true, 
    "output_file": null
}
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   fp16_auto_cast ............... False
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   fp16_enabled ................. True
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   fp16_master_weights_and_gradients  False
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   global_rank .................. 0
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   grad_accum_dtype ............. None
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   gradient_accumulation_steps .. 2
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   gradient_clipping ............ 1.0
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   gradient_predivide_factor .... 1.0
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   hybrid_engine ................ enabled=False max_out_tokens=512 inference_tp_size=1 release_inference_cache=False pin_parameters=True tp_gather_partition_size=8
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   initial_dynamic_scale ........ 65536
[2023-04-14 07:00:29,719] [INFO] [config.py:957:print]   load_universal_checkpoint .... False
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   loss_scale ................... 0
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   memory_breakdown ............. False
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   monitor_config ............... tensorboard=TensorBoardConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') wandb=WandbConfig(enabled=False, group=None, team=None, project='deepspeed') csv_monitor=CSVConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') enabled=False
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   nebula_config ................ {
    "enabled": false, 
    "persistent_storage_path": null, 
    "persistent_time_interval": 100, 
    "num_of_version_in_retention": 2, 
    "enable_nebula_load": true, 
    "load_path": null
}
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   optimizer_legacy_fusion ...... False
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   optimizer_name ............... None
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   optimizer_params ............. None
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   pipeline ..................... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activation_checkpoint_interval': 0}
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   pld_enabled .................. False
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   pld_params ................... False
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   prescale_gradients ........... False
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   scheduler_name ............... None
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   scheduler_params ............. None
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   sparse_attention ............. None
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   sparse_gradients_enabled ..... False
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   steps_per_print .............. 10
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   train_batch_size ............. 32
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   train_micro_batch_size_per_gpu  16
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   use_node_local_storage ....... False
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   wall_clock_breakdown ......... False
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   world_size ................... 1
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   zero_allow_untested_optimizer  False
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   zero_config .................. stage=0 contiguous_gradients=True reduce_scatter=True reduce_bucket_size=500,000,000 allgather_partitions=True allgather_bucket_size=500,000,000 overlap_comm=False load_from_fp32_weights=True elastic_checkpoint=False offload_param=DeepSpeedZeroOffloadParamConfig(device='none', nvme_path=None, buffer_count=5, buffer_size=100,000,000, max_in_cpu=1,000,000,000, pin_memory=False) offload_optimizer=DeepSpeedZeroOffloadOptimizerConfig(device='none', nvme_path=None, buffer_count=4, pin_memory=False, pipeline=False, pipeline_read=False, pipeline_write=False, fast_init=False) sub_group_size=1,000,000,000 cpu_offload_param=None cpu_offload_use_pin_memory=None cpu_offload=None prefetch_bucket_size=30000000 param_persistence_threshold=10000 model_persistence_threshold=sys.maxsize max_live_parameters=30000000 max_reuse_distance=1,000,000,000 gather_16bit_weights_on_model_save=False stage3_gather_fp16_weights_on_model_save=False ignore_unused_parameters=True legacy_stage1=False round_robin_gradients=False memory_efficient_linear=False
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   zero_enabled ................. False
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   zero_force_ds_cpu_optimizer .. True
[2023-04-14 07:00:29,720] [INFO] [config.py:957:print]   zero_optimization_stage ...... 0
[2023-04-14 07:00:29,720] [INFO] [config.py:943:print_user_config]   json = {
    "train_batch_size": 32, 
    "train_micro_batch_size_per_gpu": 16, 
    "steps_per_print": 10, 
    "zero_optimization": {
        "stage": 0, 
        "offload_param": {
            "device": "none"
        }, 
        "offload_optimizer": {
            "device": "none"
        }, 
        "stage3_param_persistence_threshold": 1.000000e+04, 
        "stage3_max_live_parameters": 3.000000e+07, 
        "stage3_prefetch_bucket_size": 3.000000e+07, 
        "memory_efficient_linear": false
    }, 
    "fp16": {
        "enabled": true, 
        "loss_scale_window": 100
    }, 
    "gradient_clipping": 1.0, 
    "prescale_gradients": false, 
    "wall_clock_breakdown": false, 
    "hybrid_engine": {
        "enabled": false, 
        "inference_tp_size": 1, 
        "release_inference_cache": false, 
        "pin_parameters": true, 
        "tp_gather_partition_size": 8
    }
}
Using /root/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
Creating extension directory /root/.cache/torch_extensions/py38_cu117/utils...
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
	- Avoid using `tokenizers` before the fork if possible
	- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
	- Avoid using `tokenizers` before the fork if possible
	- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
	- Avoid using `tokenizers` before the fork if possible
	- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Emitting ninja build file /root/.cache/torch_extensions/py38_cu117/utils/build.ninja...
Building extension module utils...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
	- Avoid using `tokenizers` before the fork if possible
	- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
[1/2] c++ -MMD -MF flatten_unflatten.o.d -DTORCH_EXTENSION_NAME=utils -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -isystem /usr/local/lib/python3.8/site-packages/torch/include -isystem /usr/local/lib/python3.8/site-packages/torch/include/torch/csrc/api/include -isystem /usr/local/lib/python3.8/site-packages/torch/include/TH -isystem /usr/local/lib/python3.8/site-packages/torch/include/THC -isystem /usr/local/include/python3.8 -D_GLIBCXX_USE_CXX11_ABI=0 -fPIC -std=c++14 -c /usr/local/lib/python3.8/site-packages/deepspeed/ops/csrc/utils/flatten_unflatten.cpp -o flatten_unflatten.o 
[2/2] c++ flatten_unflatten.o -shared -L/usr/local/lib/python3.8/site-packages/torch/lib -lc10 -ltorch_cpu -ltorch -ltorch_python -o utils.so
Loading extension module utils...
Time to load utils op: 12.565346956253052 seconds
***** Running training *****
***** Evaluating perplexity, Epoch 0/1 *****
ppl: 4841.33251953125
Beginning of Epoch 1/1, Total Micro Batches 2860
[2023-04-14 07:01:26,912] [INFO] [fused_optimizer.py:362:_update_scale] 
Grad overflow on iteration 0
[2023-04-14 07:01:26,912] [INFO] [fused_optimizer.py:363:_update_scale] Reducing dynamic loss scale from 65536 to 32768.0
[2023-04-14 07:01:26,912] [INFO] [logging.py:96:log_dist] [Rank 0] Overflow detected. Skipping step. Attempted loss scale: 65536, reducing to 32768.0
[2023-04-14 07:01:28,022] [INFO] [fused_optimizer.py:362:_update_scale] 
Grad overflow on iteration 1
[2023-04-14 07:01:28,023] [INFO] [fused_optimizer.py:363:_update_scale] Reducing dynamic loss scale from 32768.0 to 16384.0
[2023-04-14 07:01:28,023] [INFO] [logging.py:96:log_dist] [Rank 0] Overflow detected. Skipping step. Attempted loss scale: 32768.0, reducing to 16384.0
[2023-04-14 07:01:29,132] [INFO] [fused_optimizer.py:362:_update_scale] 
Grad overflow on iteration 2
[2023-04-14 07:01:29,133] [INFO] [fused_optimizer.py:363:_update_scale] Reducing dynamic loss scale from 16384.0 to 8192.0
[2023-04-14 07:01:29,133] [INFO] [logging.py:96:log_dist] [Rank 0] Overflow detected. Skipping step. Attempted loss scale: 16384.0, reducing to 8192.0
[2023-04-14 07:01:30,237] [INFO] [fused_optimizer.py:362:_update_scale] 
Grad overflow on iteration 3
[2023-04-14 07:01:30,238] [INFO] [fused_optimizer.py:363:_update_scale] Reducing dynamic loss scale from 8192.0 to 4096.0
[2023-04-14 07:01:30,238] [INFO] [logging.py:96:log_dist] [Rank 0] Overflow detected. Skipping step. Attempted loss scale: 8192.0, reducing to 4096.0
[2023-04-14 07:01:37,134] [INFO] [logging.py:96:log_dist] [Rank 0] step=10, skipped=4, lr=[0.0009999565625930518, 0.0009999565625930518], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:01:37,138] [INFO] [timer.py:199:stop] epoch=0/micro_step=20/global_step=10, RunningAvgSamplesPerSec=28.141096377600697, CurrSamplesPerSec=28.12801123295279, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:01:48,572] [INFO] [logging.py:96:log_dist] [Rank 0] step=20, skipped=4, lr=[0.000999691139103864, 0.000999691139103864], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:01:48,576] [INFO] [timer.py:199:stop] epoch=0/micro_step=40/global_step=20, RunningAvgSamplesPerSec=28.078686785579933, CurrSamplesPerSec=28.071358760840397, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:02:00,002] [INFO] [logging.py:96:log_dist] [Rank 0] step=30, skipped=4, lr=[0.0009991845519630679, 0.0009991845519630679], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:02:00,006] [INFO] [timer.py:199:stop] epoch=0/micro_step=60/global_step=30, RunningAvgSamplesPerSec=28.067548117432807, CurrSamplesPerSec=28.11579075481346, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:02:11,418] [INFO] [logging.py:96:log_dist] [Rank 0] step=40, skipped=4, lr=[0.0009984370456625003, 0.0009984370456625003], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:02:11,423] [INFO] [timer.py:199:stop] epoch=0/micro_step=80/global_step=40, RunningAvgSamplesPerSec=28.073548066802058, CurrSamplesPerSec=28.17129833011603, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:02:22,838] [INFO] [logging.py:96:log_dist] [Rank 0] step=50, skipped=4, lr=[0.0009974489809677126, 0.0009974489809677126], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:02:22,842] [INFO] [timer.py:199:stop] epoch=0/micro_step=100/global_step=50, RunningAvgSamplesPerSec=28.073460515306376, CurrSamplesPerSec=28.103057175257835, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:02:34,274] [INFO] [logging.py:96:log_dist] [Rank 0] step=60, skipped=4, lr=[0.0009962208347438538, 0.0009962208347438538], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:02:34,278] [INFO] [timer.py:199:stop] epoch=0/micro_step=120/global_step=60, RunningAvgSamplesPerSec=28.06668333658504, CurrSamplesPerSec=27.944933682231035, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:02:45,732] [INFO] [logging.py:96:log_dist] [Rank 0] step=70, skipped=4, lr=[0.0009947531997255255, 0.0009947531997255255], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:02:45,734] [INFO] [timer.py:199:stop] epoch=0/micro_step=140/global_step=70, RunningAvgSamplesPerSec=28.054937933989542, CurrSamplesPerSec=27.874315487266735, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:02:57,224] [INFO] [logging.py:96:log_dist] [Rank 0] step=80, skipped=4, lr=[0.0009930467842307117, 0.0009930467842307117], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:02:57,227] [INFO] [timer.py:199:stop] epoch=0/micro_step=160/global_step=80, RunningAvgSamplesPerSec=28.03502976436525, CurrSamplesPerSec=27.943706074371658, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:03:08,725] [INFO] [logging.py:96:log_dist] [Rank 0] step=90, skipped=4, lr=[0.0009911024118189266, 0.0009911024118189266], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:03:08,728] [INFO] [timer.py:199:stop] epoch=0/micro_step=180/global_step=90, RunningAvgSamplesPerSec=28.01790135317418, CurrSamplesPerSec=27.889363254819838, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:03:20,199] [INFO] [logging.py:96:log_dist] [Rank 0] step=100, skipped=4, lr=[0.0009889210208937447, 0.0009889210208937447], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:03:20,202] [INFO] [timer.py:199:stop] epoch=0/micro_step=200/global_step=100, RunningAvgSamplesPerSec=28.01027508003987, CurrSamplesPerSec=28.008906574044975, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:03:25,943] [INFO] [fused_optimizer.py:370:_update_scale] No Grad overflow for 100 iterations
[2023-04-14 07:03:25,943] [INFO] [fused_optimizer.py:371:_update_scale] Increasing dynamic loss scale from 4096.0 to 8192.0
[2023-04-14 07:03:31,714] [INFO] [logging.py:96:log_dist] [Rank 0] step=110, skipped=4, lr=[0.000986503664249902, 0.000986503664249902], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:03:31,717] [INFO] [timer.py:199:stop] epoch=0/micro_step=220/global_step=110, RunningAvgSamplesPerSec=27.994640314629194, CurrSamplesPerSec=27.73325619189209, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:03:43,229] [INFO] [logging.py:96:log_dist] [Rank 0] step=120, skipped=4, lr=[0.000983851508565192, 0.000983851508565192], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:03:43,232] [INFO] [timer.py:199:stop] epoch=0/micro_step=240/global_step=120, RunningAvgSamplesPerSec=27.98217971508587, CurrSamplesPerSec=27.775588813338135, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:03:54,753] [INFO] [logging.py:96:log_dist] [Rank 0] step=130, skipped=4, lr=[0.0009809658338373964, 0.0009809658338373964], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:03:54,756] [INFO] [timer.py:199:stop] epoch=0/micro_step=260/global_step=130, RunningAvgSamplesPerSec=27.969826533526934, CurrSamplesPerSec=27.816915092931872, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:04:06,264] [INFO] [logging.py:96:log_dist] [Rank 0] step=140, skipped=4, lr=[0.0009778480327665255, 0.0009778480327665255], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:04:06,267] [INFO] [timer.py:199:stop] epoch=0/micro_step=280/global_step=140, RunningAvgSamplesPerSec=27.961798295095445, CurrSamplesPerSec=27.948134115000336, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:04:17,780] [INFO] [logging.py:96:log_dist] [Rank 0] step=150, skipped=4, lr=[0.0009744996100826668, 0.0009744996100826668], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:04:17,783] [INFO] [timer.py:199:stop] epoch=0/micro_step=300/global_step=150, RunningAvgSamplesPerSec=27.953563434154024, CurrSamplesPerSec=27.900500251008975, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:04:29,304] [INFO] [logging.py:96:log_dist] [Rank 0] step=160, skipped=4, lr=[0.0009709221818197624, 0.0009709221818197624], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:04:29,307] [INFO] [timer.py:199:stop] epoch=0/micro_step=320/global_step=160, RunningAvgSamplesPerSec=27.94473140562776, CurrSamplesPerSec=27.869627240021313, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:04:40,823] [INFO] [logging.py:96:log_dist] [Rank 0] step=170, skipped=4, lr=[0.0009671174745356714, 0.0009671174745356714], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:04:40,826] [INFO] [timer.py:199:stop] epoch=0/micro_step=340/global_step=170, RunningAvgSamplesPerSec=27.938436426576004, CurrSamplesPerSec=27.914235169869585, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:04:52,287] [INFO] [logging.py:96:log_dist] [Rank 0] step=180, skipped=4, lr=[0.0009630873244788883, 0.0009630873244788883], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:04:52,291] [INFO] [timer.py:199:stop] epoch=0/micro_step=360/global_step=180, RunningAvgSamplesPerSec=27.93923052396758, CurrSamplesPerSec=28.012267836208732, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:05:03,761] [INFO] [logging.py:96:log_dist] [Rank 0] step=190, skipped=4, lr=[0.0009588336767023232, 0.0009588336767023232], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:05:03,765] [INFO] [timer.py:199:stop] epoch=0/micro_step=380/global_step=190, RunningAvgSamplesPerSec=27.939053853941257, CurrSamplesPerSec=27.900796044680277, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:05:15,227] [INFO] [logging.py:96:log_dist] [Rank 0] step=200, skipped=4, lr=[0.0009543585841245694, 0.0009543585841245694], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:05:15,231] [INFO] [timer.py:199:stop] epoch=0/micro_step=400/global_step=200, RunningAvgSamplesPerSec=27.940316446938077, CurrSamplesPerSec=27.99571484352838, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:05:20,945] [INFO] [fused_optimizer.py:370:_update_scale] No Grad overflow for 100 iterations
[2023-04-14 07:05:20,945] [INFO] [fused_optimizer.py:371:_update_scale] Increasing dynamic loss scale from 8192.0 to 16384.0
[2023-04-14 07:05:26,700] [INFO] [logging.py:96:log_dist] [Rank 0] step=210, skipped=4, lr=[0.0009496642065391134, 0.0009496642065391134], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:05:26,703] [INFO] [timer.py:199:stop] epoch=0/micro_step=420/global_step=210, RunningAvgSamplesPerSec=27.9406361563072, CurrSamplesPerSec=27.793493868223226, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:05:38,150] [INFO] [logging.py:96:log_dist] [Rank 0] step=220, skipped=4, lr=[0.0009447528095719625, 0.0009447528095719625], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:05:38,154] [INFO] [timer.py:199:stop] epoch=0/micro_step=440/global_step=220, RunningAvgSamplesPerSec=27.94290479002408, CurrSamplesPerSec=28.06016123471817, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:05:49,608] [INFO] [logging.py:96:log_dist] [Rank 0] step=230, skipped=4, lr=[0.0009396267635881972, 0.0009396267635881972], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:05:49,612] [INFO] [timer.py:199:stop] epoch=0/micro_step=460/global_step=230, RunningAvgSamplesPerSec=27.943999646258902, CurrSamplesPerSec=27.976067155370266, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:06:01,058] [INFO] [logging.py:96:log_dist] [Rank 0] step=240, skipped=4, lr=[0.0009342885425479722, 0.0009342885425479722], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:06:01,062] [INFO] [timer.py:199:stop] epoch=0/micro_step=480/global_step=240, RunningAvgSamplesPerSec=27.945878308209277, CurrSamplesPerSec=27.97900642619156, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:06:12,521] [INFO] [logging.py:96:log_dist] [Rank 0] step=250, skipped=4, lr=[0.0009287407228125202, 0.0009287407228125202], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:06:12,525] [INFO] [timer.py:199:stop] epoch=0/micro_step=500/global_step=250, RunningAvgSamplesPerSec=27.94650874790295, CurrSamplesPerSec=27.93969237507434, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:06:23,989] [INFO] [logging.py:96:log_dist] [Rank 0] step=260, skipped=4, lr=[0.0009229859819007346, 0.0009229859819007346], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:06:23,994] [INFO] [timer.py:199:stop] epoch=0/micro_step=520/global_step=260, RunningAvgSamplesPerSec=27.946762620632057, CurrSamplesPerSec=27.852716360251165, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:06:35,446] [INFO] [logging.py:96:log_dist] [Rank 0] step=270, skipped=4, lr=[0.0009170270971969311, 0.0009170270971969311], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:06:35,450] [INFO] [timer.py:199:stop] epoch=0/micro_step=540/global_step=270, RunningAvgSamplesPerSec=27.947756017554656, CurrSamplesPerSec=27.903829741761506, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:06:46,919] [INFO] [logging.py:96:log_dist] [Rank 0] step=280, skipped=4, lr=[0.0009108669446104109, 0.0009108669446104109], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:06:46,923] [INFO] [timer.py:199:stop] epoch=0/micro_step=560/global_step=280, RunningAvgSamplesPerSec=27.947241583138933, CurrSamplesPerSec=27.948896507994682, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:06:58,387] [INFO] [logging.py:96:log_dist] [Rank 0] step=290, skipped=4, lr=[0.0009045084971874737, 0.0009045084971874737], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:06:58,391] [INFO] [timer.py:199:stop] epoch=0/micro_step=580/global_step=290, RunningAvgSamplesPerSec=27.94705445274327, CurrSamplesPerSec=27.954659449124346, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:07:09,856] [INFO] [logging.py:96:log_dist] [Rank 0] step=300, skipped=4, lr=[0.0008979548236765506, 0.0008979548236765506], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:07:09,860] [INFO] [timer.py:199:stop] epoch=0/micro_step=600/global_step=300, RunningAvgSamplesPerSec=27.94713926621857, CurrSamplesPerSec=27.96594772558736, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:07:15,588] [INFO] [fused_optimizer.py:370:_update_scale] No Grad overflow for 100 iterations
[2023-04-14 07:07:15,588] [INFO] [fused_optimizer.py:371:_update_scale] Increasing dynamic loss scale from 16384.0 to 32768.0
[2023-04-14 07:07:21,358] [INFO] [logging.py:96:log_dist] [Rank 0] step=310, skipped=4, lr=[0.0008912090870471478, 0.0008912090870471478], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:07:21,362] [INFO] [timer.py:199:stop] epoch=0/micro_step=620/global_step=310, RunningAvgSamplesPerSec=27.944936270242373, CurrSamplesPerSec=27.91026475482345, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:07:32,837] [INFO] [logging.py:96:log_dist] [Rank 0] step=320, skipped=4, lr=[0.0008842745429633161, 0.0008842745429633161], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:07:32,841] [INFO] [timer.py:199:stop] epoch=0/micro_step=640/global_step=320, RunningAvgSamplesPerSec=27.944254036885653, CurrSamplesPerSec=27.86717377393364, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:07:44,321] [INFO] [logging.py:96:log_dist] [Rank 0] step=330, skipped=4, lr=[0.0008771545382123862, 0.0008771545382123862], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:07:44,325] [INFO] [timer.py:199:stop] epoch=0/micro_step=660/global_step=330, RunningAvgSamplesPerSec=27.94347994504524, CurrSamplesPerSec=27.898429870906778, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:07:55,801] [INFO] [logging.py:96:log_dist] [Rank 0] step=340, skipped=4, lr=[0.0008698525090897231, 0.0008698525090897231], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:07:55,806] [INFO] [timer.py:199:stop] epoch=0/micro_step=680/global_step=340, RunningAvgSamplesPerSec=27.94270471004713, CurrSamplesPerSec=27.936912546325544, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:08:07,325] [INFO] [logging.py:96:log_dist] [Rank 0] step=350, skipped=4, lr=[0.0008623719797402826, 0.0008623719797402826], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:08:07,327] [INFO] [timer.py:199:stop] epoch=0/micro_step=700/global_step=350, RunningAvgSamplesPerSec=27.93934291085674, CurrSamplesPerSec=27.81048847374359, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:08:18,851] [INFO] [logging.py:96:log_dist] [Rank 0] step=360, skipped=4, lr=[0.0008547165604577695, 0.0008547165604577695], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:08:18,854] [INFO] [timer.py:199:stop] epoch=0/micro_step=720/global_step=360, RunningAvgSamplesPerSec=27.93575047924138, CurrSamplesPerSec=27.804871217472908, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:08:30,744] [INFO] [logging.py:96:log_dist] [Rank 0] step=370, skipped=4, lr=[0.0008468899459422181, 0.0008468899459422181], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:08:30,749] [INFO] [timer.py:199:stop] epoch=0/micro_step=740/global_step=370, RunningAvgSamplesPerSec=27.90790507995182, CurrSamplesPerSec=27.907189040202667, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:08:42,219] [INFO] [logging.py:96:log_dist] [Rank 0] step=380, skipped=4, lr=[0.0008388959135168359, 0.0008388959135168359], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:08:42,223] [INFO] [timer.py:199:stop] epoch=0/micro_step=760/global_step=380, RunningAvgSamplesPerSec=27.908444913494918, CurrSamplesPerSec=27.887045373418886, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:08:53,681] [INFO] [logging.py:96:log_dist] [Rank 0] step=390, skipped=4, lr=[0.0008307383213049714, 0.0008307383213049714], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:08:53,684] [INFO] [timer.py:199:stop] epoch=0/micro_step=780/global_step=390, RunningAvgSamplesPerSec=27.90980129021459, CurrSamplesPerSec=27.966454688659038, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:09:05,184] [INFO] [logging.py:96:log_dist] [Rank 0] step=400, skipped=4, lr=[0.0008224211063680853, 0.0008224211063680853], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:09:05,187] [INFO] [timer.py:199:stop] epoch=0/micro_step=800/global_step=400, RunningAvgSamplesPerSec=27.90872959774225, CurrSamplesPerSec=27.84752691848682, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:09:10,935] [INFO] [fused_optimizer.py:370:_update_scale] No Grad overflow for 100 iterations
[2023-04-14 07:09:10,935] [INFO] [fused_optimizer.py:371:_update_scale] Increasing dynamic loss scale from 32768.0 to 65536.0
[2023-04-14 07:09:16,717] [INFO] [logging.py:96:log_dist] [Rank 0] step=410, skipped=4, lr=[0.0008139482828056254, 0.0008139482828056254], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:09:16,720] [INFO] [timer.py:199:stop] epoch=0/micro_step=820/global_step=410, RunningAvgSamplesPerSec=27.90608462810118, CurrSamplesPerSec=27.829552200369534, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:09:28,236] [INFO] [logging.py:96:log_dist] [Rank 0] step=420, skipped=4, lr=[0.0008053239398177191, 0.0008053239398177191], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:09:28,239] [INFO] [timer.py:199:stop] epoch=0/micro_step=840/global_step=420, RunningAvgSamplesPerSec=27.904361435920347, CurrSamplesPerSec=27.818385275198793, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:09:39,767] [INFO] [logging.py:96:log_dist] [Rank 0] step=430, skipped=4, lr=[0.0007965522397316221, 0.0007965522397316221], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:09:39,770] [INFO] [timer.py:199:stop] epoch=0/micro_step=860/global_step=430, RunningAvgSamplesPerSec=27.90219677277752, CurrSamplesPerSec=27.88143190257329, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:09:51,289] [INFO] [logging.py:96:log_dist] [Rank 0] step=440, skipped=4, lr=[0.000787637415992873, 0.000787637415992873], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:09:51,292] [INFO] [timer.py:199:stop] epoch=0/micro_step=880/global_step=440, RunningAvgSamplesPerSec=27.900581766447058, CurrSamplesPerSec=27.8346656745396, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:10:02,815] [INFO] [logging.py:96:log_dist] [Rank 0] step=450, skipped=4, lr=[0.000778583771122125, 0.000778583771122125], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:10:02,818] [INFO] [timer.py:199:stop] epoch=0/micro_step=900/global_step=450, RunningAvgSamplesPerSec=27.89877176742672, CurrSamplesPerSec=27.79556597095809, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:10:14,348] [INFO] [logging.py:96:log_dist] [Rank 0] step=460, skipped=4, lr=[0.0007693956746386408, 0.0007693956746386408], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:10:14,351] [INFO] [timer.py:199:stop] epoch=0/micro_step=920/global_step=460, RunningAvgSamplesPerSec=27.896732463439644, CurrSamplesPerSec=27.784754146720147, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:10:25,872] [INFO] [logging.py:96:log_dist] [Rank 0] step=470, skipped=4, lr=[0.0007600775609514493, 0.0007600775609514493], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:10:25,875] [INFO] [timer.py:199:stop] epoch=0/micro_step=940/global_step=470, RunningAvgSamplesPerSec=27.89516590035489, CurrSamplesPerSec=27.84345993311814, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:10:37,388] [INFO] [logging.py:96:log_dist] [Rank 0] step=480, skipped=4, lr=[0.0007506339272191898, 0.0007506339272191898], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:10:37,391] [INFO] [timer.py:199:stop] epoch=0/micro_step=960/global_step=480, RunningAvgSamplesPerSec=27.894055137267724, CurrSamplesPerSec=27.834573315230116, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:10:48,874] [INFO] [logging.py:96:log_dist] [Rank 0] step=490, skipped=4, lr=[0.0007410693311796666, 0.0007410693311796666], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:10:48,878] [INFO] [timer.py:199:stop] epoch=0/micro_step=980/global_step=490, RunningAvgSamplesPerSec=27.894183330433044, CurrSamplesPerSec=27.907345711163856, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:11:00,353] [INFO] [logging.py:96:log_dist] [Rank 0] step=500, skipped=4, lr=[0.0007313883889501701, 0.0007313883889501701], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:11:00,357] [INFO] [timer.py:199:stop] epoch=0/micro_step=1000/global_step=500, RunningAvgSamplesPerSec=27.894589838673543, CurrSamplesPerSec=27.908755828978105, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:11:06,083] [INFO] [fused_optimizer.py:370:_update_scale] No Grad overflow for 100 iterations
[2023-04-14 07:11:06,083] [INFO] [fused_optimizer.py:371:_update_scale] Increasing dynamic loss scale from 65536.0 to 131072.0
[2023-04-14 07:11:07,202] [INFO] [fused_optimizer.py:362:_update_scale] 
Grad overflow on iteration 505
[2023-04-14 07:11:07,202] [INFO] [fused_optimizer.py:363:_update_scale] Reducing dynamic loss scale from 131072.0 to 65536.0
[2023-04-14 07:11:07,202] [INFO] [logging.py:96:log_dist] [Rank 0] Overflow detected. Skipping step. Attempted loss scale: 131072.0, reducing to 65536.0
[2023-04-14 07:11:11,809] [INFO] [logging.py:96:log_dist] [Rank 0] step=510, skipped=5, lr=[0.0007225799254574904, 0.0007225799254574904], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:11:11,812] [INFO] [timer.py:199:stop] epoch=0/micro_step=1020/global_step=510, RunningAvgSamplesPerSec=27.89634129666697, CurrSamplesPerSec=27.8067088187211, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:11:23,295] [INFO] [logging.py:96:log_dist] [Rank 0] step=520, skipped=5, lr=[0.0007126908421605375, 0.0007126908421605375], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:11:23,299] [INFO] [timer.py:199:stop] epoch=0/micro_step=1040/global_step=520, RunningAvgSamplesPerSec=27.89659063794343, CurrSamplesPerSec=27.815104964319715, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:11:34,808] [INFO] [logging.py:96:log_dist] [Rank 0] step=530, skipped=5, lr=[0.0007026991088541184, 0.0007026991088541184], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:11:34,811] [INFO] [timer.py:199:stop] epoch=0/micro_step=1060/global_step=530, RunningAvgSamplesPerSec=27.895834937739032, CurrSamplesPerSec=27.752305959568453, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:11:46,336] [INFO] [logging.py:96:log_dist] [Rank 0] step=540, skipped=5, lr=[0.0006926095478028312, 0.0006926095478028312], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:11:46,339] [INFO] [timer.py:199:stop] epoch=0/micro_step=1080/global_step=540, RunningAvgSamplesPerSec=27.894509973359995, CurrSamplesPerSec=27.821614456207993, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:11:57,868] [INFO] [logging.py:96:log_dist] [Rank 0] step=550, skipped=5, lr=[0.0006824270284854318, 0.0006824270284854318], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:11:57,871] [INFO] [timer.py:199:stop] epoch=0/micro_step=1100/global_step=550, RunningAvgSamplesPerSec=27.89287517733588, CurrSamplesPerSec=27.847723365469484, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:12:09,396] [INFO] [logging.py:96:log_dist] [Rank 0] step=560, skipped=5, lr=[0.0006721564652446986, 0.0006721564652446986], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:12:09,399] [INFO] [timer.py:199:stop] epoch=0/micro_step=1120/global_step=560, RunningAvgSamplesPerSec=27.891494332148227, CurrSamplesPerSec=27.835600847069383, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:12:20,889] [INFO] [logging.py:96:log_dist] [Rank 0] step=570, skipped=5, lr=[0.0006618028149156478, 0.0006618028149156478], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:12:20,893] [INFO] [timer.py:199:stop] epoch=0/micro_step=1140/global_step=570, RunningAvgSamplesPerSec=27.891413431856982, CurrSamplesPerSec=27.95477589666847, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:12:32,373] [INFO] [logging.py:96:log_dist] [Rank 0] step=580, skipped=5, lr=[0.000651371074433236, 0.000651371074433236], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:12:32,378] [INFO] [timer.py:199:stop] epoch=0/micro_step=1160/global_step=580, RunningAvgSamplesPerSec=27.891824691179327, CurrSamplesPerSec=27.922760285015862, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:12:43,854] [INFO] [logging.py:96:log_dist] [Rank 0] step=590, skipped=5, lr=[0.0006408662784207149, 0.0006408662784207149], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:12:43,858] [INFO] [timer.py:199:stop] epoch=0/micro_step=1180/global_step=590, RunningAvgSamplesPerSec=27.892302295009106, CurrSamplesPerSec=27.9054657757225, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:12:55,346] [INFO] [logging.py:96:log_dist] [Rank 0] step=600, skipped=5, lr=[0.0006302934967597922, 0.0006302934967597922], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:12:55,350] [INFO] [timer.py:199:stop] epoch=0/micro_step=1200/global_step=600, RunningAvgSamplesPerSec=27.8923588635317, CurrSamplesPerSec=27.87588437646747, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:13:03,375] [INFO] [fused_optimizer.py:370:_update_scale] No Grad overflow for 100 iterations
[2023-04-14 07:13:03,375] [INFO] [fused_optimizer.py:371:_update_scale] Increasing dynamic loss scale from 65536.0 to 131072.0
[2023-04-14 07:13:04,497] [INFO] [fused_optimizer.py:362:_update_scale] 
Grad overflow on iteration 607
[2023-04-14 07:13:04,497] [INFO] [fused_optimizer.py:363:_update_scale] Reducing dynamic loss scale from 131072.0 to 65536.0
[2023-04-14 07:13:04,497] [INFO] [logging.py:96:log_dist] [Rank 0] Overflow detected. Skipping step. Attempted loss scale: 131072.0, reducing to 65536.0
[2023-04-14 07:13:06,800] [INFO] [logging.py:96:log_dist] [Rank 0] step=610, skipped=6, lr=[0.0006207240822732765, 0.0006207240822732765], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:13:06,803] [INFO] [timer.py:199:stop] epoch=0/micro_step=1220/global_step=610, RunningAvgSamplesPerSec=27.894034412979668, CurrSamplesPerSec=27.77138191552118, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:13:18,324] [INFO] [logging.py:96:log_dist] [Rank 0] step=620, skipped=6, lr=[0.0006100362109349642, 0.0006100362109349642], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:13:18,327] [INFO] [timer.py:199:stop] epoch=0/micro_step=1240/global_step=620, RunningAvgSamplesPerSec=27.89279294451914, CurrSamplesPerSec=27.905912527559167, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:13:29,816] [INFO] [logging.py:96:log_dist] [Rank 0] step=630, skipped=6, lr=[0.0005992952333228728, 0.0005992952333228728], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:13:29,820] [INFO] [timer.py:199:stop] epoch=0/micro_step=1260/global_step=630, RunningAvgSamplesPerSec=27.89272171060291, CurrSamplesPerSec=27.96218977944038, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:13:41,310] [INFO] [logging.py:96:log_dist] [Rank 0] step=640, skipped=6, lr=[0.0005885063333059565, 0.0005885063333059565], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:13:41,315] [INFO] [timer.py:199:stop] epoch=0/micro_step=1280/global_step=640, RunningAvgSamplesPerSec=27.89272318651298, CurrSamplesPerSec=27.81198102901513, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:13:52,810] [INFO] [logging.py:96:log_dist] [Rank 0] step=650, skipped=6, lr=[0.0005776747178817414, 0.0005776747178817414], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:13:52,814] [INFO] [timer.py:199:stop] epoch=0/micro_step=1300/global_step=650, RunningAvgSamplesPerSec=27.89249637831583, CurrSamplesPerSec=27.907229658431103, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:14:04,303] [INFO] [logging.py:96:log_dist] [Rank 0] step=660, skipped=6, lr=[0.0005668056146632947, 0.0005668056146632947], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:14:04,307] [INFO] [timer.py:199:stop] epoch=0/micro_step=1320/global_step=660, RunningAvgSamplesPerSec=27.892518411874637, CurrSamplesPerSec=27.875195432893204, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:14:15,778] [INFO] [logging.py:96:log_dist] [Rank 0] step=670, skipped=6, lr=[0.0005559042693562469, 0.0005559042693562469], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:14:15,782] [INFO] [timer.py:199:stop] epoch=0/micro_step=1340/global_step=670, RunningAvgSamplesPerSec=27.893138504741042, CurrSamplesPerSec=27.95382687744928, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:14:27,256] [INFO] [logging.py:96:log_dist] [Rank 0] step=680, skipped=6, lr=[0.0005449759432270804, 0.0005449759432270804], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:14:27,260] [INFO] [timer.py:199:stop] epoch=0/micro_step=1360/global_step=680, RunningAvgSamplesPerSec=27.893536617667916, CurrSamplesPerSec=27.96974165373949, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:14:38,770] [INFO] [logging.py:96:log_dist] [Rank 0] step=690, skipped=6, lr=[0.0005340259105639084, 0.0005340259105639084], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:14:38,773] [INFO] [timer.py:199:stop] epoch=0/micro_step=1380/global_step=690, RunningAvgSamplesPerSec=27.892900012846674, CurrSamplesPerSec=27.69449210326329, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:14:50,296] [INFO] [logging.py:96:log_dist] [Rank 0] step=700, skipped=6, lr=[0.0005230594561309696, 0.0005230594561309696], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:14:50,298] [INFO] [timer.py:199:stop] epoch=0/micro_step=1400/global_step=700, RunningAvgSamplesPerSec=27.891842261813647, CurrSamplesPerSec=27.820172764912243, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:15:00,667] [INFO] [fused_optimizer.py:370:_update_scale] No Grad overflow for 100 iterations
[2023-04-14 07:15:00,668] [INFO] [fused_optimizer.py:371:_update_scale] Increasing dynamic loss scale from 65536.0 to 131072.0
[2023-04-14 07:15:01,790] [INFO] [fused_optimizer.py:362:_update_scale] 
Grad overflow on iteration 709
[2023-04-14 07:15:01,790] [INFO] [fused_optimizer.py:363:_update_scale] Reducing dynamic loss scale from 131072.0 to 65536.0
[2023-04-14 07:15:01,790] [INFO] [logging.py:96:log_dist] [Rank 0] Overflow detected. Skipping step. Attempted loss scale: 131072.0, reducing to 65536.0
[2023-04-14 07:15:01,791] [INFO] [logging.py:96:log_dist] [Rank 0] step=710, skipped=7, lr=[0.0005131799808136933, 0.0005131799808136933], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:15:01,791] [INFO] [timer.py:199:stop] epoch=0/micro_step=1420/global_step=710, RunningAvgSamplesPerSec=27.891948204255108, CurrSamplesPerSec=28.95740738143756, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:15:13,345] [INFO] [logging.py:96:log_dist] [Rank 0] step=720, skipped=7, lr=[0.000502196910870706, 0.000502196910870706], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:15:13,348] [INFO] [timer.py:199:stop] epoch=0/micro_step=1440/global_step=720, RunningAvgSamplesPerSec=27.890011265201572, CurrSamplesPerSec=27.805216829256672, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:15:24,897] [INFO] [logging.py:96:log_dist] [Rank 0] step=730, skipped=7, lr=[0.000491212780642662, 0.000491212780642662], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:15:24,898] [INFO] [timer.py:199:stop] epoch=0/micro_step=1460/global_step=730, RunningAvgSamplesPerSec=27.888223393268152, CurrSamplesPerSec=27.67360429127508, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:15:36,427] [INFO] [logging.py:96:log_dist] [Rank 0] step=740, skipped=7, lr=[0.00048023289135015165, 0.00048023289135015165], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:15:36,430] [INFO] [timer.py:199:stop] epoch=0/micro_step=1480/global_step=740, RunningAvgSamplesPerSec=27.887041180852446, CurrSamplesPerSec=27.774082919312047, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:15:47,945] [INFO] [logging.py:96:log_dist] [Rank 0] step=750, skipped=7, lr=[0.0004692625421669822, 0.0004692625421669822], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:15:47,948] [INFO] [timer.py:199:stop] epoch=0/micro_step=1500/global_step=750, RunningAvgSamplesPerSec=27.88640588569903, CurrSamplesPerSec=27.785266065711962, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:15:59,438] [INFO] [logging.py:96:log_dist] [Rank 0] step=760, skipped=7, lr=[0.00045830702766266147, 0.00045830702766266147], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:15:59,442] [INFO] [timer.py:199:stop] epoch=0/micro_step=1520/global_step=760, RunningAvgSamplesPerSec=27.886367741109595, CurrSamplesPerSec=27.96386762128507, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:16:10,917] [INFO] [logging.py:96:log_dist] [Rank 0] step=770, skipped=7, lr=[0.0004473716352471042, 0.0004473716352471042], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:16:10,921] [INFO] [timer.py:199:stop] epoch=0/micro_step=1540/global_step=770, RunningAvgSamplesPerSec=27.88680069794766, CurrSamplesPerSec=28.053563105282276, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:16:22,396] [INFO] [logging.py:96:log_dist] [Rank 0] step=780, skipped=7, lr=[0.0004364616426187927, 0.0004364616426187927], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:16:22,398] [INFO] [timer.py:199:stop] epoch=0/micro_step=1560/global_step=780, RunningAvgSamplesPerSec=27.887253810566094, CurrSamplesPerSec=27.89529878735907, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:16:33,902] [INFO] [logging.py:96:log_dist] [Rank 0] step=790, skipped=7, lr=[0.00042558231521762715, 0.00042558231521762715], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:16:33,906] [INFO] [timer.py:199:stop] epoch=0/micro_step=1580/global_step=790, RunningAvgSamplesPerSec=27.886969688438924, CurrSamplesPerSec=27.93280197260283, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:16:45,386] [INFO] [logging.py:96:log_dist] [Rank 0] step=800, skipped=7, lr=[0.0004147389036836881, 0.0004147389036836881], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:16:45,390] [INFO] [timer.py:199:stop] epoch=0/micro_step=1600/global_step=800, RunningAvgSamplesPerSec=27.887305876227373, CurrSamplesPerSec=28.029010161575716, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:16:56,887] [INFO] [logging.py:96:log_dist] [Rank 0] step=810, skipped=7, lr=[0.00040393664132314577, 0.00040393664132314577], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:16:56,891] [INFO] [timer.py:199:stop] epoch=0/micro_step=1620/global_step=810, RunningAvgSamplesPerSec=27.887205733734877, CurrSamplesPerSec=27.867405214544448, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:16:58,024] [INFO] [fused_optimizer.py:370:_update_scale] No Grad overflow for 100 iterations
[2023-04-14 07:16:58,024] [INFO] [fused_optimizer.py:371:_update_scale] Increasing dynamic loss scale from 65536.0 to 131072.0
[2023-04-14 07:16:59,143] [INFO] [fused_optimizer.py:362:_update_scale] 
Grad overflow on iteration 811
[2023-04-14 07:16:59,143] [INFO] [fused_optimizer.py:363:_update_scale] Reducing dynamic loss scale from 131072.0 to 65536.0
[2023-04-14 07:16:59,143] [INFO] [logging.py:96:log_dist] [Rank 0] Overflow detected. Skipping step. Attempted loss scale: 131072.0, reducing to 65536.0
[2023-04-14 07:17:08,336] [INFO] [logging.py:96:log_dist] [Rank 0] step=820, skipped=8, lr=[0.00039425409710640367, 0.00039425409710640367], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:17:08,340] [INFO] [timer.py:199:stop] epoch=0/micro_step=1640/global_step=820, RunningAvgSamplesPerSec=27.88866067362485, CurrSamplesPerSec=27.88372567949294, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:17:19,826] [INFO] [logging.py:96:log_dist] [Rank 0] step=830, skipped=8, lr=[0.0003835443627787501, 0.0003835443627787501], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:17:19,830] [INFO] [timer.py:199:stop] epoch=0/micro_step=1660/global_step=830, RunningAvgSamplesPerSec=27.888870665784353, CurrSamplesPerSec=27.930802357198182, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:17:31,327] [INFO] [logging.py:96:log_dist] [Rank 0] step=840, skipped=8, lr=[0.00037289083290325663, 0.00037289083290325663], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:17:31,332] [INFO] [timer.py:199:stop] epoch=0/micro_step=1680/global_step=840, RunningAvgSamplesPerSec=27.88868285582777, CurrSamplesPerSec=27.91060138361735, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:17:42,811] [INFO] [logging.py:96:log_dist] [Rank 0] step=850, skipped=8, lr=[0.00036229864914437627, 0.00036229864914437627], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:17:42,815] [INFO] [timer.py:199:stop] epoch=0/micro_step=1700/global_step=850, RunningAvgSamplesPerSec=27.888991103657123, CurrSamplesPerSec=27.99500244663193, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:17:54,311] [INFO] [logging.py:96:log_dist] [Rank 0] step=860, skipped=8, lr=[0.0003517729235593656, 0.0003517729235593656], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:17:54,315] [INFO] [timer.py:199:stop] epoch=0/micro_step=1720/global_step=860, RunningAvgSamplesPerSec=27.888824968158044, CurrSamplesPerSec=27.79561202119477, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:18:05,790] [INFO] [logging.py:96:log_dist] [Rank 0] step=870, skipped=8, lr=[0.0003413187361310768, 0.0003413187361310768], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:18:05,794] [INFO] [timer.py:199:stop] epoch=0/micro_step=1740/global_step=870, RunningAvgSamplesPerSec=27.889214737300335, CurrSamplesPerSec=27.8595326070193, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:18:17,263] [INFO] [logging.py:96:log_dist] [Rank 0] step=880, skipped=8, lr=[0.00033094113231622814, 0.00033094113231622814], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:18:17,267] [INFO] [timer.py:199:stop] epoch=0/micro_step=1760/global_step=880, RunningAvgSamplesPerSec=27.889744389157606, CurrSamplesPerSec=27.939151486387185, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:18:28,755] [INFO] [logging.py:96:log_dist] [Rank 0] step=890, skipped=8, lr=[0.00032064512061033795, 0.00032064512061033795], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:18:28,759] [INFO] [timer.py:199:stop] epoch=0/micro_step=1780/global_step=890, RunningAvgSamplesPerSec=27.889847441807508, CurrSamplesPerSec=27.883441833100377, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:18:40,235] [INFO] [logging.py:96:log_dist] [Rank 0] step=900, skipped=8, lr=[0.0003104356701304984, 0.0003104356701304984], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:18:40,239] [INFO] [timer.py:199:stop] epoch=0/micro_step=1800/global_step=900, RunningAvgSamplesPerSec=27.890308024616438, CurrSamplesPerSec=27.996123612216046, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:18:51,698] [INFO] [logging.py:96:log_dist] [Rank 0] step=910, skipped=8, lr=[0.0003003177082171523, 0.0003003177082171523], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:18:51,703] [INFO] [timer.py:199:stop] epoch=0/micro_step=1820/global_step=910, RunningAvgSamplesPerSec=27.891063811342896, CurrSamplesPerSec=28.02250273037165, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:18:55,133] [INFO] [fused_optimizer.py:370:_update_scale] No Grad overflow for 100 iterations
[2023-04-14 07:18:55,133] [INFO] [fused_optimizer.py:371:_update_scale] Increasing dynamic loss scale from 65536.0 to 131072.0
[2023-04-14 07:18:56,258] [INFO] [fused_optimizer.py:362:_update_scale] 
Grad overflow on iteration 913
[2023-04-14 07:18:56,258] [INFO] [fused_optimizer.py:363:_update_scale] Reducing dynamic loss scale from 131072.0 to 65536.0
[2023-04-14 07:18:56,258] [INFO] [logging.py:96:log_dist] [Rank 0] Overflow detected. Skipping step. Attempted loss scale: 131072.0, reducing to 65536.0
[2023-04-14 07:19:03,163] [INFO] [logging.py:96:log_dist] [Rank 0] step=920, skipped=9, lr=[0.0002912938021228969, 0.0002912938021228969], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:19:03,167] [INFO] [timer.py:199:stop] epoch=0/micro_step=1840/global_step=920, RunningAvgSamplesPerSec=27.89179147203074, CurrSamplesPerSec=27.909759826857577, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:19:14,663] [INFO] [logging.py:96:log_dist] [Rank 0] step=930, skipped=9, lr=[0.0002813630832692028, 0.0002813630832692028], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:19:14,666] [INFO] [timer.py:199:stop] epoch=0/micro_step=1860/global_step=930, RunningAvgSamplesPerSec=27.891644633622363, CurrSamplesPerSec=27.93588915038034, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:19:26,134] [INFO] [logging.py:96:log_dist] [Rank 0] step=940, skipped=9, lr=[0.0002715378841517797, 0.0002715378841517797], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:19:26,138] [INFO] [timer.py:199:stop] epoch=0/micro_step=1880/global_step=940, RunningAvgSamplesPerSec=27.892197066996538, CurrSamplesPerSec=27.81900798747771, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:19:37,618] [INFO] [logging.py:96:log_dist] [Rank 0] step=950, skipped=9, lr=[0.0002618229466615909, 0.0002618229466615909], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:19:37,623] [INFO] [timer.py:199:stop] epoch=0/micro_step=1900/global_step=950, RunningAvgSamplesPerSec=27.892464622791415, CurrSamplesPerSec=27.991750406629706, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:19:49,136] [INFO] [logging.py:96:log_dist] [Rank 0] step=960, skipped=9, lr=[0.0002522229594745347, 0.0002522229594745347], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:19:49,139] [INFO] [timer.py:199:stop] epoch=0/micro_step=1920/global_step=960, RunningAvgSamplesPerSec=27.89188688703324, CurrSamplesPerSec=27.798715007397167, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:20:00,657] [INFO] [logging.py:96:log_dist] [Rank 0] step=970, skipped=9, lr=[0.00024274255578856863, 0.00024274255578856863], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:20:00,660] [INFO] [timer.py:199:stop] epoch=0/micro_step=1940/global_step=970, RunningAvgSamplesPerSec=27.891210364911945, CurrSamplesPerSec=27.92338186963334, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:20:12,189] [INFO] [logging.py:96:log_dist] [Rank 0] step=980, skipped=9, lr=[0.00023338631108761243, 0.00023338631108761243], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:20:12,191] [INFO] [timer.py:199:stop] epoch=0/micro_step=1960/global_step=980, RunningAvgSamplesPerSec=27.89030240271364, CurrSamplesPerSec=27.735944052707037, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:20:23,713] [INFO] [logging.py:96:log_dist] [Rank 0] step=990, skipped=9, lr=[0.00022415874093330168, 0.00022415874093330168], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:20:23,716] [INFO] [timer.py:199:stop] epoch=0/micro_step=1980/global_step=990, RunningAvgSamplesPerSec=27.88958828343984, CurrSamplesPerSec=27.900581448647156, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:20:35,240] [INFO] [logging.py:96:log_dist] [Rank 0] step=1000, skipped=9, lr=[0.00021506429878566358, 0.00021506429878566358], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:20:35,243] [INFO] [timer.py:199:stop] epoch=0/micro_step=2000/global_step=1000, RunningAvgSamplesPerSec=27.8888042861563, CurrSamplesPerSec=27.843431052527308, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:20:46,760] [INFO] [logging.py:96:log_dist] [Rank 0] step=1010, skipped=9, lr=[0.00020610737385376348, 0.00020610737385376348], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:20:46,763] [INFO] [timer.py:199:stop] epoch=0/micro_step=2020/global_step=1010, RunningAvgSamplesPerSec=27.888221552350714, CurrSamplesPerSec=27.786836451762564, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:20:52,511] [INFO] [fused_optimizer.py:370:_update_scale] No Grad overflow for 100 iterations
[2023-04-14 07:20:52,511] [INFO] [fused_optimizer.py:371:_update_scale] Increasing dynamic loss scale from 65536.0 to 131072.0
[2023-04-14 07:20:53,632] [INFO] [fused_optimizer.py:362:_update_scale] 
Grad overflow on iteration 1015
[2023-04-14 07:20:53,632] [INFO] [fused_optimizer.py:363:_update_scale] Reducing dynamic loss scale from 131072.0 to 65536.0
[2023-04-14 07:20:53,632] [INFO] [logging.py:96:log_dist] [Rank 0] Overflow detected. Skipping step. Attempted loss scale: 131072.0, reducing to 65536.0
[2023-04-14 07:20:58,235] [INFO] [logging.py:96:log_dist] [Rank 0] step=1020, skipped=10, lr=[0.00019816729286664797, 0.00019816729286664797], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:20:58,237] [INFO] [timer.py:199:stop] epoch=0/micro_step=2040/global_step=1020, RunningAvgSamplesPerSec=27.88870545989438, CurrSamplesPerSec=27.867642445160214, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:21:09,756] [INFO] [logging.py:96:log_dist] [Rank 0] step=1030, skipped=10, lr=[0.00018948350353219912, 0.00018948350353219912], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:21:09,759] [INFO] [timer.py:199:stop] epoch=0/micro_step=2060/global_step=1030, RunningAvgSamplesPerSec=27.88813161815214, CurrSamplesPerSec=27.848382060873252, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:21:21,272] [INFO] [logging.py:96:log_dist] [Rank 0] step=1040, skipped=10, lr=[0.00018094957735583463, 0.00018094957735583463], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:21:21,275] [INFO] [timer.py:199:stop] epoch=0/micro_step=2080/global_step=1040, RunningAvgSamplesPerSec=27.88764375410306, CurrSamplesPerSec=27.903528082688315, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:21:32,763] [INFO] [logging.py:96:log_dist] [Rank 0] step=1050, skipped=10, lr=[0.0001725696330273575, 0.0001725696330273575], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:21:32,767] [INFO] [timer.py:199:stop] epoch=0/micro_step=2100/global_step=1050, RunningAvgSamplesPerSec=27.887679086609435, CurrSamplesPerSec=28.033693636377496, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:21:44,235] [INFO] [logging.py:96:log_dist] [Rank 0] step=1060, skipped=10, lr=[0.00016434771492101485, 0.00016434771492101485], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:21:44,239] [INFO] [timer.py:199:stop] epoch=0/micro_step=2120/global_step=1060, RunningAvgSamplesPerSec=27.88815801794712, CurrSamplesPerSec=28.001240069947958, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:21:55,712] [INFO] [logging.py:96:log_dist] [Rank 0] step=1070, skipped=10, lr=[0.00015628779114358032, 0.00015628779114358032], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:21:55,716] [INFO] [timer.py:199:stop] epoch=0/micro_step=2140/global_step=1070, RunningAvgSamplesPerSec=27.888536944504718, CurrSamplesPerSec=27.99043112291661, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:22:07,186] [INFO] [logging.py:96:log_dist] [Rank 0] step=1080, skipped=10, lr=[0.00014839375161924446, 0.00014839375161924446], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:22:07,190] [INFO] [timer.py:199:stop] epoch=0/micro_step=2160/global_step=1080, RunningAvgSamplesPerSec=27.88894765269856, CurrSamplesPerSec=27.835323752361386, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:22:18,654] [INFO] [logging.py:96:log_dist] [Rank 0] step=1090, skipped=10, lr=[0.0001406694062122389, 0.0001406694062122389], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:22:18,658] [INFO] [timer.py:199:stop] epoch=0/micro_step=2180/global_step=1090, RunningAvgSamplesPerSec=27.889494217031334, CurrSamplesPerSec=28.003711357844125, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:22:30,143] [INFO] [logging.py:96:log_dist] [Rank 0] step=1100, skipped=10, lr=[0.00013311848288809813, 0.00013311848288809813], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:22:30,146] [INFO] [timer.py:199:stop] epoch=0/micro_step=2200/global_step=1100, RunningAvgSamplesPerSec=27.889578327515956, CurrSamplesPerSec=27.854068937808545, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:22:41,668] [INFO] [logging.py:96:log_dist] [Rank 0] step=1110, skipped=10, lr=[0.0001257446259144494, 0.0001257446259144494], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:22:41,671] [INFO] [timer.py:199:stop] epoch=0/micro_step=2220/global_step=1110, RunningAvgSamplesPerSec=27.888904673878535, CurrSamplesPerSec=27.79085813957533, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:22:49,719] [INFO] [fused_optimizer.py:370:_update_scale] No Grad overflow for 100 iterations
[2023-04-14 07:22:49,719] [INFO] [fused_optimizer.py:371:_update_scale] Increasing dynamic loss scale from 65536.0 to 131072.0
[2023-04-14 07:22:50,842] [INFO] [fused_optimizer.py:362:_update_scale] 
Grad overflow on iteration 1117
[2023-04-14 07:22:50,843] [INFO] [fused_optimizer.py:363:_update_scale] Reducing dynamic loss scale from 131072.0 to 65536.0
[2023-04-14 07:22:50,843] [INFO] [logging.py:96:log_dist] [Rank 0] Overflow detected. Skipping step. Attempted loss scale: 131072.0, reducing to 65536.0
[2023-04-14 07:22:53,446] [INFO] [logging.py:96:log_dist] [Rank 0] step=1120, skipped=11, lr=[0.00011926248951860314, 0.00011926248951860314], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:22:53,450] [INFO] [timer.py:199:stop] epoch=0/micro_step=2240/global_step=1120, RunningAvgSamplesPerSec=27.88276514737834, CurrSamplesPerSec=27.959655920841712, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:23:04,931] [INFO] [logging.py:96:log_dist] [Rank 0] step=1130, skipped=11, lr=[0.00011223479112018653, 0.00011223479112018653], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:23:04,935] [INFO] [timer.py:199:stop] epoch=0/micro_step=2260/global_step=1130, RunningAvgSamplesPerSec=27.882905723669616, CurrSamplesPerSec=27.956068529561303, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:23:16,386] [INFO] [logging.py:96:log_dist] [Rank 0] step=1140, skipped=11, lr=[0.00010539423807301218, 0.00010539423807301218], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:23:16,390] [INFO] [timer.py:199:stop] epoch=0/micro_step=2280/global_step=1140, RunningAvgSamplesPerSec=27.883620594264737, CurrSamplesPerSec=28.00500852036866, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:23:27,875] [INFO] [logging.py:96:log_dist] [Rank 0] step=1150, skipped=11, lr=[9.874413180194608e-05, 9.874413180194608e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:23:27,878] [INFO] [timer.py:199:stop] epoch=0/micro_step=2300/global_step=1150, RunningAvgSamplesPerSec=27.88376230362711, CurrSamplesPerSec=27.839694409482334, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:23:39,400] [INFO] [logging.py:96:log_dist] [Rank 0] step=1160, skipped=11, lr=[9.228768181739628e-05, 9.228768181739628e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:23:39,403] [INFO] [timer.py:199:stop] epoch=0/micro_step=2320/global_step=1160, RunningAvgSamplesPerSec=27.88317799150038, CurrSamplesPerSec=27.911019278934415, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:23:50,930] [INFO] [logging.py:96:log_dist] [Rank 0] step=1170, skipped=11, lr=[8.60280041663225e-05, 8.60280041663225e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:23:50,933] [INFO] [timer.py:199:stop] epoch=0/micro_step=2340/global_step=1170, RunningAvgSamplesPerSec=27.882588082067915, CurrSamplesPerSec=27.84352347062886, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:24:02,445] [INFO] [logging.py:96:log_dist] [Rank 0] step=1180, skipped=11, lr=[7.996811992835184e-05, 7.996811992835184e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:24:02,448] [INFO] [timer.py:199:stop] epoch=0/micro_step=2360/global_step=1180, RunningAvgSamplesPerSec=27.882268201762017, CurrSamplesPerSec=27.892591546585386, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:24:13,955] [INFO] [logging.py:96:log_dist] [Rank 0] step=1190, skipped=11, lr=[7.411095375772925e-05, 7.411095375772925e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:24:13,959] [INFO] [timer.py:199:stop] epoch=0/micro_step=2380/global_step=1190, RunningAvgSamplesPerSec=27.88202009403273, CurrSamplesPerSec=27.86537445431461, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:24:25,476] [INFO] [logging.py:96:log_dist] [Rank 0] step=1200, skipped=11, lr=[6.845933247180514e-05, 6.845933247180514e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:24:25,479] [INFO] [timer.py:199:stop] epoch=0/micro_step=2400/global_step=1200, RunningAvgSamplesPerSec=27.881605191374955, CurrSamplesPerSec=27.84837050454499, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:24:37,000] [INFO] [logging.py:96:log_dist] [Rank 0] step=1210, skipped=11, lr=[6.301598368674105e-05, 6.301598368674105e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:24:37,002] [INFO] [timer.py:199:stop] epoch=0/micro_step=2420/global_step=1210, RunningAvgSamplesPerSec=27.88109042500762, CurrSamplesPerSec=27.851387031683306, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:24:47,327] [INFO] [fused_optimizer.py:370:_update_scale] No Grad overflow for 100 iterations
[2023-04-14 07:24:47,328] [INFO] [fused_optimizer.py:371:_update_scale] Increasing dynamic loss scale from 65536.0 to 131072.0
[2023-04-14 07:24:48,449] [INFO] [fused_optimizer.py:362:_update_scale] 
Grad overflow on iteration 1219
[2023-04-14 07:24:48,450] [INFO] [fused_optimizer.py:363:_update_scale] Reducing dynamic loss scale from 131072.0 to 65536.0
[2023-04-14 07:24:48,450] [INFO] [logging.py:96:log_dist] [Rank 0] Overflow detected. Skipping step. Attempted loss scale: 131072.0, reducing to 65536.0
[2023-04-14 07:24:48,450] [INFO] [logging.py:96:log_dist] [Rank 0] step=1220, skipped=12, lr=[5.8297216162899295e-05, 5.8297216162899295e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:24:48,451] [INFO] [timer.py:199:stop] epoch=0/micro_step=2440/global_step=1220, RunningAvgSamplesPerSec=27.882041162742162, CurrSamplesPerSec=28.920824294076024, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:24:59,914] [INFO] [logging.py:96:log_dist] [Rank 0] step=1230, skipped=12, lr=[5.325673868567482e-05, 5.325673868567482e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:24:59,918] [INFO] [timer.py:199:stop] epoch=0/micro_step=2460/global_step=1230, RunningAvgSamplesPerSec=27.882582805118812, CurrSamplesPerSec=28.024743707689165, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:25:11,382] [INFO] [logging.py:96:log_dist] [Rank 0] step=1240, skipped=12, lr=[4.843187086769574e-05, 4.843187086769574e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:25:11,386] [INFO] [timer.py:199:stop] epoch=0/micro_step=2480/global_step=1240, RunningAvgSamplesPerSec=27.883115787936894, CurrSamplesPerSec=27.959434594084506, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:25:22,842] [INFO] [logging.py:96:log_dist] [Rank 0] step=1250, skipped=12, lr=[4.38249413128744e-05, 4.38249413128744e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:25:22,846] [INFO] [timer.py:199:stop] epoch=0/micro_step=2500/global_step=1250, RunningAvgSamplesPerSec=27.883773985755955, CurrSamplesPerSec=27.98992912726541, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:25:34,315] [INFO] [logging.py:96:log_dist] [Rank 0] step=1260, skipped=12, lr=[3.9438173442575e-05, 3.9438173442575e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:25:34,319] [INFO] [timer.py:199:stop] epoch=0/micro_step=2520/global_step=1260, RunningAvgSamplesPerSec=27.884217398264887, CurrSamplesPerSec=27.88673248894651, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:25:45,828] [INFO] [logging.py:96:log_dist] [Rank 0] step=1270, skipped=12, lr=[3.5273684422533594e-05, 3.5273684422533594e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:25:45,831] [INFO] [timer.py:199:stop] epoch=0/micro_step=2540/global_step=1270, RunningAvgSamplesPerSec=27.883976240456118, CurrSamplesPerSec=27.828173153796904, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:25:57,331] [INFO] [logging.py:96:log_dist] [Rank 0] step=1280, skipped=12, lr=[3.133348414106035e-05, 3.133348414106035e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:25:57,334] [INFO] [timer.py:199:stop] epoch=0/micro_step=2560/global_step=1280, RunningAvgSamplesPerSec=27.883867373684225, CurrSamplesPerSec=27.819359716918402, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:26:08,841] [INFO] [logging.py:96:log_dist] [Rank 0] step=1290, skipped=12, lr=[2.7619474239016175e-05, 2.7619474239016175e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:26:08,845] [INFO] [timer.py:199:stop] epoch=0/micro_step=2580/global_step=1290, RunningAvgSamplesPerSec=27.883616888716304, CurrSamplesPerSec=27.80841414561024, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:26:20,301] [INFO] [logging.py:96:log_dist] [Rank 0] step=1300, skipped=12, lr=[2.4133447192032476e-05, 2.4133447192032476e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:26:20,305] [INFO] [timer.py:199:stop] epoch=0/micro_step=2600/global_step=1300, RunningAvgSamplesPerSec=27.88425762253477, CurrSamplesPerSec=27.963587966994822, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:26:31,766] [INFO] [logging.py:96:log_dist] [Rank 0] step=1310, skipped=12, lr=[2.087708544541689e-05, 2.087708544541689e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:26:31,770] [INFO] [timer.py:199:stop] epoch=0/micro_step=2620/global_step=1310, RunningAvgSamplesPerSec=27.884794065846652, CurrSamplesPerSec=27.93517398067774, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:26:43,220] [INFO] [logging.py:96:log_dist] [Rank 0] step=1320, skipped=12, lr=[1.7851960602162432e-05, 1.7851960602162432e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:26:43,224] [INFO] [timer.py:199:stop] epoch=0/micro_step=2640/global_step=1320, RunningAvgSamplesPerSec=27.88553456135489, CurrSamplesPerSec=27.976463687615464, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:26:44,359] [INFO] [fused_optimizer.py:370:_update_scale] No Grad overflow for 100 iterations
[2023-04-14 07:26:44,359] [INFO] [fused_optimizer.py:371:_update_scale] Increasing dynamic loss scale from 65536.0 to 131072.0
[2023-04-14 07:26:45,481] [INFO] [fused_optimizer.py:362:_update_scale] 
Grad overflow on iteration 1321
[2023-04-14 07:26:45,481] [INFO] [fused_optimizer.py:363:_update_scale] Reducing dynamic loss scale from 131072.0 to 65536.0
[2023-04-14 07:26:45,481] [INFO] [logging.py:96:log_dist] [Rank 0] Overflow detected. Skipping step. Attempted loss scale: 131072.0, reducing to 65536.0
[2023-04-14 07:26:54,663] [INFO] [logging.py:96:log_dist] [Rank 0] step=1330, skipped=13, lr=[1.53282648048792e-05, 1.53282648048792e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:26:54,667] [INFO] [timer.py:199:stop] epoch=0/micro_step=2660/global_step=1330, RunningAvgSamplesPerSec=27.886483846959727, CurrSamplesPerSec=27.916034999005806, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:27:06,129] [INFO] [logging.py:96:log_dist] [Rank 0] step=1340, skipped=13, lr=[1.2746419577261248e-05, 1.2746419577261248e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:27:06,133] [INFO] [timer.py:199:stop] epoch=0/micro_step=2680/global_step=1340, RunningAvgSamplesPerSec=27.886975829937917, CurrSamplesPerSec=27.917562132811387, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:27:17,598] [INFO] [logging.py:96:log_dist] [Rank 0] step=1350, skipped=13, lr=[1.0399735319127134e-05, 1.0399735319127134e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:27:17,603] [INFO] [timer.py:199:stop] epoch=0/micro_step=2700/global_step=1350, RunningAvgSamplesPerSec=27.887425274088365, CurrSamplesPerSec=27.92047169795621, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:27:29,066] [INFO] [logging.py:96:log_dist] [Rank 0] step=1360, skipped=13, lr=[8.289344599979375e-06, 8.289344599979375e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:27:29,070] [INFO] [timer.py:199:stop] epoch=0/micro_step=2720/global_step=1360, RunningAvgSamplesPerSec=27.887938002301073, CurrSamplesPerSec=27.977962447777546, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:27:40,552] [INFO] [logging.py:96:log_dist] [Rank 0] step=1370, skipped=13, lr=[6.4162659480493935e-06, 6.4162659480493935e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:27:40,555] [INFO] [timer.py:199:stop] epoch=0/micro_step=2740/global_step=1370, RunningAvgSamplesPerSec=27.88807816395258, CurrSamplesPerSec=27.940076244267264, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:27:52,083] [INFO] [logging.py:96:log_dist] [Rank 0] step=1380, skipped=13, lr=[4.781403358729786e-06, 4.781403358729786e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:27:52,086] [INFO] [timer.py:199:stop] epoch=0/micro_step=2760/global_step=1380, RunningAvgSamplesPerSec=27.887456424438863, CurrSamplesPerSec=27.74971246039417, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:28:03,601] [INFO] [logging.py:96:log_dist] [Rank 0] step=1390, skipped=13, lr=[3.3855458582830455e-06, 3.3855458582830455e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:28:03,604] [INFO] [timer.py:199:stop] epoch=0/micro_step=2780/global_step=1390, RunningAvgSamplesPerSec=27.887111940337512, CurrSamplesPerSec=27.871450259874212, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:28:15,108] [INFO] [logging.py:96:log_dist] [Rank 0] step=1400, skipped=13, lr=[2.2293671230376176e-06, 2.2293671230376176e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:28:15,111] [INFO] [timer.py:199:stop] epoch=0/micro_step=2800/global_step=1400, RunningAvgSamplesPerSec=27.8869534453658, CurrSamplesPerSec=27.841652123641264, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:28:26,626] [INFO] [logging.py:96:log_dist] [Rank 0] step=1410, skipped=13, lr=[1.3134251542544773e-06, 1.3134251542544773e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:28:26,628] [INFO] [timer.py:199:stop] epoch=0/micro_step=2820/global_step=1410, RunningAvgSamplesPerSec=27.886597879837947, CurrSamplesPerSec=27.783661349068428, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:28:38,133] [INFO] [logging.py:96:log_dist] [Rank 0] step=1420, skipped=13, lr=[6.381620088213858e-07, 6.381620088213858e-07], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:28:38,135] [INFO] [timer.py:199:stop] epoch=0/micro_step=2840/global_step=1420, RunningAvgSamplesPerSec=27.88643605360806, CurrSamplesPerSec=27.833776741626135, MemAllocated=8.15GB, MaxMemAllocated=44.21GB
[2023-04-14 07:28:41,567] [INFO] [fused_optimizer.py:370:_update_scale] No Grad overflow for 100 iterations
[2023-04-14 07:28:41,567] [INFO] [fused_optimizer.py:371:_update_scale] Increasing dynamic loss scale from 65536.0 to 131072.0
[2023-04-14 07:28:42,688] [INFO] [fused_optimizer.py:362:_update_scale] 
Grad overflow on iteration 1423
[2023-04-14 07:28:42,688] [INFO] [fused_optimizer.py:363:_update_scale] Reducing dynamic loss scale from 131072.0 to 65536.0
[2023-04-14 07:28:42,688] [INFO] [logging.py:96:log_dist] [Rank 0] Overflow detected. Skipping step. Attempted loss scale: 131072.0, reducing to 65536.0
[2023-04-14 07:28:49,374] [INFO] [logging.py:96:log_dist] [Rank 0] step=1430, skipped=14, lr=[2.3647733036713525e-07, 2.3647733036713525e-07], mom=[(0.9, 0.95), (0.9, 0.95)]
[2023-04-14 07:28:49,378] [INFO] [timer.py:199:stop] epoch=0/micro_step=2860/global_step=1430, RunningAvgSamplesPerSec=27.890724382161228, CurrSamplesPerSec=33.86488836407768, MemAllocated=7.87GB, MaxMemAllocated=44.21GB
***** Evaluating perplexity, Epoch 1/1 *****
ppl: 2.1566169261932373
saving the final model ...
[2023-04-14 07:29:39,262] [INFO] [launch.py:460:main] Process 1097 exits successfully.