File size: 6,536 Bytes
e922192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0f0c0a
e922192
 
 
c0f0c0a
e922192
 
 
 
 
 
 
 
 
 
 
 
 
c0f0c0a
e922192
 
 
 
 
c0f0c0a
e922192
 
 
 
 
c0f0c0a
e922192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09cc5e5
c0f0c0a
 
09cc5e5
c0f0c0a
09cc5e5
c0f0c0a
 
 
 
09cc5e5
c0f0c0a
 
e922192
 
 
 
 
 
 
 
 
 
 
c0f0c0a
e922192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fc8456
e922192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e063f35
e922192
 
 
 
 
 
 
 
 
 
e063f35
e922192
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import ast
import tarfile
from ast import AsyncFunctionDef, ClassDef, FunctionDef, Module
from io import BytesIO

import numpy as np
import requests
import torch
from transformers import Pipeline


def extract_code_and_docs(text: str):
    """Extract code and documentation from a Python file.

    Args:
        text (str): Source code of a Python file

    Returns:
        tuple: A tuple of two sets, the first is the code set, and the second is the docs set,
            each set contains unique code string or docstring, respectively.
    """
    root = ast.parse(text)
    def_nodes = [
        node
        for node in ast.walk(root)
        if isinstance(node, (AsyncFunctionDef, FunctionDef, ClassDef, Module))
    ]

    code_set = set()
    docs_set = set()
    for node in def_nodes:
        docs = ast.get_docstring(node)
        node_without_docs = node
        if docs is not None:
            docs_set.add(docs)
            # Remove docstrings from the node
            node_without_docs.body = node_without_docs.body[1:]
        if isinstance(node, (AsyncFunctionDef, FunctionDef)):
            code_set.add(ast.unparse(node_without_docs))

    return code_set, docs_set


def get_topics(repo_name, headers=None):
    api_url = f"https://api.github.com/repos/{repo_name}"
    print(f"[+] Getting topics for {repo_name}")
    try:
        response = requests.get(api_url, headers=headers)
        response.raise_for_status()
    except requests.exceptions.HTTPError as e:
        print(f"[-] Failed to get topics for {repo_name}: {e}")
        return []

    metadata = response.json()
    topics = metadata.get("topics", [])
    if topics:
        print(f"[+] Topics found for {repo_name}: {topics}")

    return topics


def download_and_extract(repos, headers=None):
    extracted_info = {}
    for repo_name in repos:
        extracted_info[repo_name] = {
            "funcs": set(),
            "docs": set(),
            "topics": get_topics(repo_name, headers=headers),
        }

        download_url = f"https://api.github.com/repos/{repo_name}/tarball"
        print(f"[+] Extracting functions and docstrings from {repo_name}")
        try:
            response = requests.get(download_url, headers=headers, stream=True)
            response.raise_for_status()
        except requests.exceptions.HTTPError as e:
            print(f"[-] Failed to download {repo_name}: {e}")
            continue

        repo_bytes = BytesIO(response.raw.read())
        print(f"[+] Extracting {repo_name} info")
        with tarfile.open(fileobj=repo_bytes) as tar:
            for member in tar.getmembers():
                if member.isfile() and member.name.endswith(".py"):
                    file_content = tar.extractfile(member).read().decode("utf-8")
                    try:
                        code_set, docs_set = extract_code_and_docs(file_content)
                    except SyntaxError as e:
                        print(f"[-] SyntaxError in {member.name}: {e}, skipping")
                        continue
                    extracted_info[repo_name]["funcs"].update(code_set)
                    extracted_info[repo_name]["docs"].update(docs_set)

    return extracted_info


class RepoEmbeddingPipeline(Pipeline):
    def __init__(self, github_token=None, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.API_HEADERS = {"Accept": "application/vnd.github+json"}
        if not github_token:
            print(
                "[!] Consider setting GITHUB_TOKEN to avoid hitting rate limits\n"
                "For more info, see:"
                "https://docs.github.com/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token"
            )
        else:
            self.API_HEADERS["Authorization"] = f"Bearer {github_token}"
            print("[+] Using GITHUB_TOKEN for authentication")

    def _sanitize_parameters(self, **kwargs):
        _forward_kwargs = {}
        if "max_length" in kwargs:
            _forward_kwargs["max_length"] = kwargs["max_length"]

        return {}, _forward_kwargs, {}

    def preprocess(self, inputs):
        if isinstance(inputs, str):
            inputs = (inputs,)

        extracted_infos = download_and_extract(inputs, headers=self.API_HEADERS)

        return extracted_infos

    def encode(self, text, max_length):
        """
        Generates an embedding for a input string.

        Parameters:

        * `text`- The input string to be embedded.
        * `max_length`- The maximum total source sequence length after tokenization.
        """
        assert max_length < 1024

        tokenizer = self.tokenizer

        tokens = (
            [tokenizer.cls_token, "<encoder-only>", tokenizer.sep_token]
            + tokenizer.tokenize(text)[: max_length - 4]
            + [tokenizer.sep_token]
        )
        tokens_id = tokenizer.convert_tokens_to_ids(tokens)
        source_ids = torch.tensor([tokens_id]).to(self.device)

        token_embeddings = self.model(source_ids)[0]
        sentence_embeddings = token_embeddings.mean(dim=1)

        return sentence_embeddings

    def _forward(self, extracted_infos, max_length=512):
        repo_dataset = {}
        for repo_name, repo_info in extracted_infos.items():
            entry = {"topics": repo_info.get("topics")}

            print(f"[+] Generating embeddings for {repo_name}")
            if entry.get("code_embeddings") is None:
                code_embeddings = [
                    [func, self.encode(func, max_length).squeeze().tolist()]
                    for func in repo_info["funcs"]
                ]
                entry["code_embeddings"] = code_embeddings
                entry["mean_code_embedding"] = (
                    np.mean([x[1] for x in code_embeddings], axis=0).tolist()
                    if code_embeddings
                    else None
                )
            if entry.get("doc_embeddings") is None:
                doc_embeddings = [
                    [doc, self.encode(doc, max_length).squeeze().tolist()]
                    for doc in repo_info["docs"]
                ]
                entry["doc_embeddings"] = doc_embeddings
                entry["mean_doc_embedding"] = (
                    np.mean([x[1] for x in doc_embeddings], axis=0).tolist()
                    if doc_embeddings
                    else None
                )

            repo_dataset[repo_name] = entry

        return repo_dataset

    def postprocess(self, repo_dataset):
        return repo_dataset