File size: 7,845 Bytes
e922192 ea248b5 e922192 c5dc40f e922192 2ab1f7c e922192 2ab1f7c e922192 c0f0c0a e922192 2ab1f7c e922192 c0f0c0a c5dc40f 2ab1f7c c5dc40f e922192 c5dc40f 8edac7f c5dc40f e922192 c5dc40f e922192 2ab1f7c e922192 2ab1f7c e922192 c0f0c0a e922192 2ab1f7c e922192 2ab1f7c e922192 2ab1f7c c5dc40f 2ab1f7c e922192 c5dc40f e922192 d52f2e6 c0f0c0a ea248b5 c0f0c0a 09cc5e5 d52f2e6 ea248b5 c0f0c0a d9e7a5e d52f2e6 c0f0c0a e922192 ea248b5 e922192 2ab1f7c e922192 c0f0c0a e922192 8fc8456 e922192 ea248b5 c5dc40f 561a94f c5dc40f 561a94f d52f2e6 561a94f 2ab1f7c 561a94f ea248b5 561a94f e922192 e063f35 e922192 561a94f ea248b5 561a94f ea248b5 561a94f e922192 e063f35 e922192 c5dc40f e922192 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import ast
import tarfile
from ast import AsyncFunctionDef, ClassDef, FunctionDef, Module
import numpy as np
import requests
import torch
from tqdm.auto import tqdm
from transformers import Pipeline
def extract_code_and_docs(text: str):
"""Extract code and documentation from a Python file.
Args:
text (str): Source code of a Python file
Returns:
tuple: A tuple of two sets, the first is the code set, and the second is the docs set,
each set contains unique code string or docstring, respectively.
"""
code_set = set()
docs_set = set()
root = ast.parse(text)
for node in ast.walk(root):
if not isinstance(node, (AsyncFunctionDef, FunctionDef, ClassDef, Module)):
continue
docs = ast.get_docstring(node)
node_without_docs = node
if docs is not None:
docs_set.add(docs)
# Remove docstrings from the node
node_without_docs.body = node_without_docs.body[1:]
if isinstance(node, (AsyncFunctionDef, FunctionDef)):
code_set.add(ast.unparse(node_without_docs))
return code_set, docs_set
def get_metadata(repo_name, headers=None):
api_url = f"https://api.github.com/repos/{repo_name}"
tqdm.write(f"[+] Getting metadata for {repo_name}")
try:
response = requests.get(api_url, headers=headers)
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as e:
tqdm.write(f"[-] Failed to retrieve metadata from {repo_name}: {e}")
return {}
def download_and_extract(repos, headers=None):
extracted_infos = []
for repo_name in tqdm(repos, disable=len(repos) <= 1):
# Get metadata
metadata = get_metadata(repo_name, headers=headers)
repo_info = {
"name": repo_name,
"funcs": set(),
"docs": set(),
"topics": [],
"license": "",
"stars": metadata.get("stargazers_count"),
}
if metadata.get("topics"):
repo_info["topics"] = metadata["topics"]
if metadata.get("license"):
repo_info["license"] = metadata["license"]["spdx_id"]
# Download repo tarball bytes
download_url = f"https://api.github.com/repos/{repo_name}/tarball"
tqdm.write(f"[+] Downloading {repo_name}")
try:
response = requests.get(download_url, headers=headers, stream=True)
response.raise_for_status()
except requests.exceptions.HTTPError as e:
tqdm.write(f"[-] Failed to download {repo_name}: {e}")
continue
# Extract python files and parse them
tqdm.write(f"[+] Extracting {repo_name} info")
with tarfile.open(fileobj=response.raw, mode="r|gz") as tar:
for member in tar:
if (member.name.endswith(".py") and member.isfile()) is False:
continue
try:
file_content = tar.extractfile(member).read().decode("utf-8")
code_set, docs_set = extract_code_and_docs(file_content)
repo_info["funcs"].update(code_set)
repo_info["docs"].update(docs_set)
except UnicodeDecodeError as e:
tqdm.write(
f"[-] UnicodeDecodeError in {member.name}, skipping: \n{e}"
)
except SyntaxError as e:
tqdm.write(f"[-] SyntaxError in {member.name}, skipping: \n{e}")
extracted_infos.append(repo_info)
return extracted_infos
class RepoEmbeddingPipeline(Pipeline):
def __init__(self, github_token=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.API_HEADERS = {"Accept": "application/vnd.github+json"}
if not github_token:
print(
"[*] Consider setting GitHub token to avoid hitting rate limits. \n"
"For more info, see: "
"https://docs.github.com/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token"
)
else:
self.set_github_token(github_token)
def set_github_token(self, github_token):
self.API_HEADERS["Authorization"] = f"Bearer {github_token}"
print("[+] GitHub token set")
def _sanitize_parameters(self, **kwargs):
_forward_kwargs = {}
if "max_length" in kwargs:
_forward_kwargs["max_length"] = kwargs["max_length"]
if "st_progress" in kwargs:
_forward_kwargs["st_progress"] = kwargs["st_progress"]
return {}, _forward_kwargs, {}
def preprocess(self, inputs):
if isinstance(inputs, str):
inputs = [inputs]
extracted_infos = download_and_extract(inputs, headers=self.API_HEADERS)
return extracted_infos
def encode(self, text, max_length):
"""
Generates an embedding for a input string.
Parameters:
* `text`- The input string to be embedded.
* `max_length`- The maximum total source sequence length after tokenization.
"""
assert max_length < 1024
tokenizer = self.tokenizer
tokens = (
[tokenizer.cls_token, "<encoder-only>", tokenizer.sep_token]
+ tokenizer.tokenize(text)[: max_length - 4]
+ [tokenizer.sep_token]
)
tokens_id = tokenizer.convert_tokens_to_ids(tokens)
source_ids = torch.tensor([tokens_id]).to(self.device)
token_embeddings = self.model(source_ids)[0]
sentence_embeddings = token_embeddings.mean(dim=1)
return sentence_embeddings
def _forward(self, extracted_infos, max_length=512, st_progress=None):
repo_dataset = []
num_texts = sum(len(x["funcs"]) + len(x["docs"]) for x in extracted_infos)
with tqdm(total=num_texts) as pbar:
for repo_info in extracted_infos:
repo_name = repo_info["name"]
entry = {
"name": repo_name,
"topics": repo_info["topics"],
"license": repo_info["license"],
"stars": repo_info["stars"],
}
pbar.set_description(f"Processing {repo_name}")
tqdm.write(f"[*] Generating embeddings for {repo_name}")
code_embeddings = []
for func in repo_info["funcs"]:
code_embeddings.append(
[func, self.encode(func, max_length).squeeze().tolist()]
)
pbar.update(1)
if st_progress:
st_progress.progress(pbar.n / pbar.total)
entry["code_embeddings"] = code_embeddings
entry["mean_code_embedding"] = (
np.mean([x[1] for x in code_embeddings], axis=0).tolist()
if code_embeddings
else None
)
doc_embeddings = []
for doc in repo_info["docs"]:
doc_embeddings.append(
[doc, self.encode(doc, max_length).squeeze().tolist()]
)
pbar.update(1)
if st_progress:
st_progress.progress(pbar.n / pbar.total)
entry["doc_embeddings"] = doc_embeddings
entry["mean_doc_embedding"] = (
np.mean([x[1] for x in doc_embeddings], axis=0).tolist()
if doc_embeddings
else None
)
repo_dataset.append(entry)
return repo_dataset
def postprocess(self, repo_dataset):
return repo_dataset
|