File size: 7,845 Bytes
e922192
 
 
 
 
 
 
ea248b5
e922192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5dc40f
 
 
 
e922192
 
 
 
 
 
 
 
 
 
 
 
2ab1f7c
e922192
2ab1f7c
e922192
c0f0c0a
e922192
 
2ab1f7c
 
 
 
e922192
 
c0f0c0a
c5dc40f
2ab1f7c
 
 
c5dc40f
 
e922192
 
c5dc40f
8edac7f
c5dc40f
e922192
c5dc40f
 
 
 
e922192
2ab1f7c
e922192
2ab1f7c
e922192
c0f0c0a
e922192
 
2ab1f7c
e922192
 
2ab1f7c
 
 
 
 
 
 
e922192
2ab1f7c
 
c5dc40f
 
2ab1f7c
 
 
 
 
 
e922192
c5dc40f
 
 
e922192
 
 
d52f2e6
c0f0c0a
ea248b5
c0f0c0a
09cc5e5
d52f2e6
ea248b5
 
c0f0c0a
 
 
d9e7a5e
 
 
 
d52f2e6
c0f0c0a
e922192
 
 
 
ea248b5
 
e922192
 
 
 
 
2ab1f7c
e922192
c0f0c0a
e922192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fc8456
e922192
 
 
 
 
 
ea248b5
c5dc40f
 
561a94f
c5dc40f
 
 
 
 
 
 
 
 
561a94f
 
d52f2e6
561a94f
 
 
 
 
 
2ab1f7c
561a94f
ea248b5
 
561a94f
e922192
e063f35
e922192
 
 
 
561a94f
 
 
 
 
 
ea248b5
561a94f
ea248b5
 
561a94f
e922192
e063f35
e922192
 
 
 
 
c5dc40f
e922192
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import ast
import tarfile
from ast import AsyncFunctionDef, ClassDef, FunctionDef, Module

import numpy as np
import requests
import torch
from tqdm.auto import tqdm
from transformers import Pipeline


def extract_code_and_docs(text: str):
    """Extract code and documentation from a Python file.

    Args:
        text (str): Source code of a Python file

    Returns:
        tuple: A tuple of two sets, the first is the code set, and the second is the docs set,
            each set contains unique code string or docstring, respectively.
    """
    code_set = set()
    docs_set = set()
    root = ast.parse(text)
    for node in ast.walk(root):
        if not isinstance(node, (AsyncFunctionDef, FunctionDef, ClassDef, Module)):
            continue
        docs = ast.get_docstring(node)
        node_without_docs = node
        if docs is not None:
            docs_set.add(docs)
            # Remove docstrings from the node
            node_without_docs.body = node_without_docs.body[1:]
        if isinstance(node, (AsyncFunctionDef, FunctionDef)):
            code_set.add(ast.unparse(node_without_docs))

    return code_set, docs_set


def get_metadata(repo_name, headers=None):
    api_url = f"https://api.github.com/repos/{repo_name}"
    tqdm.write(f"[+] Getting metadata for {repo_name}")
    try:
        response = requests.get(api_url, headers=headers)
        response.raise_for_status()

        return response.json()
    except requests.exceptions.HTTPError as e:
        tqdm.write(f"[-] Failed to retrieve metadata from {repo_name}: {e}")
        return {}


def download_and_extract(repos, headers=None):
    extracted_infos = []
    for repo_name in tqdm(repos, disable=len(repos) <= 1):
        # Get metadata
        metadata = get_metadata(repo_name, headers=headers)
        repo_info = {
            "name": repo_name,
            "funcs": set(),
            "docs": set(),
            "topics": [],
            "license": "",
            "stars": metadata.get("stargazers_count"),
        }
        if metadata.get("topics"):
            repo_info["topics"] = metadata["topics"]
        if metadata.get("license"):
            repo_info["license"] = metadata["license"]["spdx_id"]

        # Download repo tarball bytes
        download_url = f"https://api.github.com/repos/{repo_name}/tarball"
        tqdm.write(f"[+] Downloading {repo_name}")
        try:
            response = requests.get(download_url, headers=headers, stream=True)
            response.raise_for_status()
        except requests.exceptions.HTTPError as e:
            tqdm.write(f"[-] Failed to download {repo_name}: {e}")
            continue

        # Extract python files and parse them
        tqdm.write(f"[+] Extracting {repo_name} info")
        with tarfile.open(fileobj=response.raw, mode="r|gz") as tar:
            for member in tar:
                if (member.name.endswith(".py") and member.isfile()) is False:
                    continue
                try:
                    file_content = tar.extractfile(member).read().decode("utf-8")
                    code_set, docs_set = extract_code_and_docs(file_content)

                    repo_info["funcs"].update(code_set)
                    repo_info["docs"].update(docs_set)
                except UnicodeDecodeError as e:
                    tqdm.write(
                        f"[-] UnicodeDecodeError in {member.name}, skipping: \n{e}"
                    )
                except SyntaxError as e:
                    tqdm.write(f"[-] SyntaxError in {member.name}, skipping: \n{e}")

        extracted_infos.append(repo_info)

    return extracted_infos


class RepoEmbeddingPipeline(Pipeline):
    def __init__(self, github_token=None, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.API_HEADERS = {"Accept": "application/vnd.github+json"}
        if not github_token:
            print(
                "[*] Consider setting GitHub token to avoid hitting rate limits. \n"
                "For more info, see: "
                "https://docs.github.com/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token"
            )
        else:
            self.set_github_token(github_token)

    def set_github_token(self, github_token):
        self.API_HEADERS["Authorization"] = f"Bearer {github_token}"
        print("[+] GitHub token set")

    def _sanitize_parameters(self, **kwargs):
        _forward_kwargs = {}
        if "max_length" in kwargs:
            _forward_kwargs["max_length"] = kwargs["max_length"]
        if "st_progress" in kwargs:
            _forward_kwargs["st_progress"] = kwargs["st_progress"]

        return {}, _forward_kwargs, {}

    def preprocess(self, inputs):
        if isinstance(inputs, str):
            inputs = [inputs]

        extracted_infos = download_and_extract(inputs, headers=self.API_HEADERS)

        return extracted_infos

    def encode(self, text, max_length):
        """
        Generates an embedding for a input string.

        Parameters:

        * `text`- The input string to be embedded.
        * `max_length`- The maximum total source sequence length after tokenization.
        """
        assert max_length < 1024

        tokenizer = self.tokenizer

        tokens = (
            [tokenizer.cls_token, "<encoder-only>", tokenizer.sep_token]
            + tokenizer.tokenize(text)[: max_length - 4]
            + [tokenizer.sep_token]
        )
        tokens_id = tokenizer.convert_tokens_to_ids(tokens)
        source_ids = torch.tensor([tokens_id]).to(self.device)

        token_embeddings = self.model(source_ids)[0]
        sentence_embeddings = token_embeddings.mean(dim=1)

        return sentence_embeddings

    def _forward(self, extracted_infos, max_length=512, st_progress=None):
        repo_dataset = []
        num_texts = sum(len(x["funcs"]) + len(x["docs"]) for x in extracted_infos)
        with tqdm(total=num_texts) as pbar:
            for repo_info in extracted_infos:
                repo_name = repo_info["name"]
                entry = {
                    "name": repo_name,
                    "topics": repo_info["topics"],
                    "license": repo_info["license"],
                    "stars": repo_info["stars"],
                }

                pbar.set_description(f"Processing {repo_name}")

                tqdm.write(f"[*] Generating embeddings for {repo_name}")

                code_embeddings = []
                for func in repo_info["funcs"]:
                    code_embeddings.append(
                        [func, self.encode(func, max_length).squeeze().tolist()]
                    )

                    pbar.update(1)
                    if st_progress:
                        st_progress.progress(pbar.n / pbar.total)

                entry["code_embeddings"] = code_embeddings
                entry["mean_code_embedding"] = (
                    np.mean([x[1] for x in code_embeddings], axis=0).tolist()
                    if code_embeddings
                    else None
                )

                doc_embeddings = []
                for doc in repo_info["docs"]:
                    doc_embeddings.append(
                        [doc, self.encode(doc, max_length).squeeze().tolist()]
                    )

                    pbar.update(1)
                    if st_progress:
                        st_progress.progress(pbar.n / pbar.total)

                entry["doc_embeddings"] = doc_embeddings
                entry["mean_doc_embedding"] = (
                    np.mean([x[1] for x in doc_embeddings], axis=0).tolist()
                    if doc_embeddings
                    else None
                )

                repo_dataset.append(entry)

        return repo_dataset

    def postprocess(self, repo_dataset):
        return repo_dataset