RepoSim / pipeline.py
Lazyhope's picture
Allow user to manually set github token in each run
16c089c
import ast
import tarfile
from ast import AsyncFunctionDef, ClassDef, FunctionDef, Module
import numpy as np
import requests
import torch
from tqdm.auto import tqdm
from transformers import Pipeline
def extract_code_and_docs(text: str):
"""Extract code and documentation from a Python file.
Args:
text (str): Source code of a Python file
Returns:
tuple: A tuple of two sets, the first is the code set, and the second is the docs set,
each set contains unique code string or docstring, respectively.
"""
code_set = set()
docs_set = set()
root = ast.parse(text)
for node in ast.walk(root):
if not isinstance(node, (AsyncFunctionDef, FunctionDef, ClassDef, Module)):
continue
docs = ast.get_docstring(node)
node_without_docs = node
if docs is not None:
docs_set.add(docs)
# Remove docstrings from the node
node_without_docs.body = node_without_docs.body[1:]
if isinstance(node, (AsyncFunctionDef, FunctionDef)):
code_set.add(ast.unparse(node_without_docs))
return code_set, docs_set
def get_metadata(repo_name, headers=None):
api_url = f"https://api.github.com/repos/{repo_name}"
tqdm.write(f"[+] Getting metadata for {repo_name}")
try:
response = requests.get(api_url, headers=headers)
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as e:
tqdm.write(f"[-] Failed to retrieve metadata from {repo_name}: {e}")
return {}
def download_and_extract(repos, headers=None):
extracted_infos = []
for repo_name in tqdm(repos, disable=len(repos) <= 1):
# Get metadata
metadata = get_metadata(repo_name, headers=headers)
repo_info = {
"name": repo_name,
"funcs": set(),
"docs": set(),
"topics": [],
"license": "",
"stars": metadata.get("stargazers_count"),
}
if metadata.get("topics"):
repo_info["topics"] = metadata["topics"]
if metadata.get("license"):
repo_info["license"] = metadata["license"]["spdx_id"]
# Download repo tarball bytes
download_url = f"https://api.github.com/repos/{repo_name}/tarball"
tqdm.write(f"[+] Downloading {repo_name}")
try:
response = requests.get(download_url, headers=headers, stream=True)
response.raise_for_status()
except requests.exceptions.HTTPError as e:
tqdm.write(f"[-] Failed to download {repo_name}: {e}")
continue
# Extract python files and parse them
tqdm.write(f"[+] Extracting {repo_name} info")
with tarfile.open(fileobj=response.raw, mode="r|gz") as tar:
for member in tar:
if (member.name.endswith(".py") and member.isfile()) is False:
continue
try:
file_content = tar.extractfile(member).read().decode("utf-8")
code_set, docs_set = extract_code_and_docs(file_content)
repo_info["funcs"].update(code_set)
repo_info["docs"].update(docs_set)
except UnicodeDecodeError as e:
tqdm.write(
f"[-] UnicodeDecodeError in {member.name}, skipping: \n{e}"
)
except SyntaxError as e:
tqdm.write(f"[-] SyntaxError in {member.name}, skipping: \n{e}")
extracted_infos.append(repo_info)
return extracted_infos
class RepoEmbeddingPipeline(Pipeline):
def __init__(self, github_token=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.github_token = github_token
if self.github_token:
print("[+] GitHub token set!")
else:
print(
"[*] Consider setting GitHub token to avoid hitting rate limits. \n"
"For more info, see: "
"https://docs.github.com/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token"
)
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "github_token" in kwargs:
preprocess_kwargs["github_token"] = kwargs["github_token"]
_forward_kwargs = {}
if "max_length" in kwargs:
_forward_kwargs["max_length"] = kwargs["max_length"]
if "st_progress" in kwargs:
_forward_kwargs["st_progress"] = kwargs["st_progress"]
return preprocess_kwargs, _forward_kwargs, {}
def preprocess(self, inputs, github_token=None):
if isinstance(inputs, str):
inputs = [inputs]
headers = {"Accept": "application/vnd.github+json"}
token = github_token or self.github_token
if token:
headers["Authorization"] = f"Bearer {token}"
extracted_infos = download_and_extract(inputs, headers=headers)
return extracted_infos
def encode(self, text, max_length):
"""
Generates an embedding for a input string.
Parameters:
* `text`- The input string to be embedded.
* `max_length`- The maximum total source sequence length after tokenization.
"""
assert max_length < 1024
tokenizer = self.tokenizer
tokens = (
[tokenizer.cls_token, "<encoder-only>", tokenizer.sep_token]
+ tokenizer.tokenize(text)[: max_length - 4]
+ [tokenizer.sep_token]
)
tokens_id = tokenizer.convert_tokens_to_ids(tokens)
source_ids = torch.tensor([tokens_id]).to(self.device)
token_embeddings = self.model(source_ids)[0]
sentence_embeddings = token_embeddings.mean(dim=1)
return sentence_embeddings
def _forward(self, extracted_infos, max_length=512, st_progress=None):
repo_dataset = []
num_texts = sum(len(x["funcs"]) + len(x["docs"]) for x in extracted_infos)
with tqdm(total=num_texts) as pbar:
for repo_info in extracted_infos:
repo_name = repo_info["name"]
entry = {
"name": repo_name,
"topics": repo_info["topics"],
"license": repo_info["license"],
"stars": repo_info["stars"],
}
pbar.set_description(f"Processing {repo_name}")
tqdm.write(f"[*] Generating embeddings for {repo_name}")
code_embeddings = []
for func in repo_info["funcs"]:
code_embeddings.append(
[func, self.encode(func, max_length).squeeze().tolist()]
)
pbar.update(1)
if st_progress:
st_progress.progress(pbar.n / pbar.total)
entry["code_embeddings"] = code_embeddings
entry["mean_code_embedding"] = (
np.mean([x[1] for x in code_embeddings], axis=0).tolist()
if code_embeddings
else None
)
doc_embeddings = []
for doc in repo_info["docs"]:
doc_embeddings.append(
[doc, self.encode(doc, max_length).squeeze().tolist()]
)
pbar.update(1)
if st_progress:
st_progress.progress(pbar.n / pbar.total)
entry["doc_embeddings"] = doc_embeddings
entry["mean_doc_embedding"] = (
np.mean([x[1] for x in doc_embeddings], axis=0).tolist()
if doc_embeddings
else None
)
repo_dataset.append(entry)
return repo_dataset
def postprocess(self, repo_dataset):
return repo_dataset