|
import ast |
|
import tarfile |
|
from ast import AsyncFunctionDef, ClassDef, FunctionDef, Module |
|
|
|
import numpy as np |
|
import requests |
|
import torch |
|
from tqdm.auto import tqdm |
|
from transformers import Pipeline |
|
|
|
|
|
def extract_code_and_docs(text: str): |
|
"""Extract code and documentation from a Python file. |
|
|
|
Args: |
|
text (str): Source code of a Python file |
|
|
|
Returns: |
|
tuple: A tuple of two sets, the first is the code set, and the second is the docs set, |
|
each set contains unique code string or docstring, respectively. |
|
""" |
|
code_set = set() |
|
docs_set = set() |
|
root = ast.parse(text) |
|
for node in ast.walk(root): |
|
if not isinstance(node, (AsyncFunctionDef, FunctionDef, ClassDef, Module)): |
|
continue |
|
docs = ast.get_docstring(node) |
|
node_without_docs = node |
|
if docs is not None: |
|
docs_set.add(docs) |
|
|
|
node_without_docs.body = node_without_docs.body[1:] |
|
if isinstance(node, (AsyncFunctionDef, FunctionDef)): |
|
code_set.add(ast.unparse(node_without_docs)) |
|
|
|
return code_set, docs_set |
|
|
|
|
|
def get_metadata(repo_name, headers=None): |
|
api_url = f"https://api.github.com/repos/{repo_name}" |
|
tqdm.write(f"[+] Getting metadata for {repo_name}") |
|
try: |
|
response = requests.get(api_url, headers=headers) |
|
response.raise_for_status() |
|
|
|
return response.json() |
|
except requests.exceptions.HTTPError as e: |
|
tqdm.write(f"[-] Failed to retrieve metadata from {repo_name}: {e}") |
|
return {} |
|
|
|
|
|
def download_and_extract(repos, headers=None): |
|
extracted_infos = [] |
|
for repo_name in tqdm(repos, disable=len(repos) <= 1): |
|
|
|
metadata = get_metadata(repo_name, headers=headers) |
|
repo_info = { |
|
"name": repo_name, |
|
"funcs": set(), |
|
"docs": set(), |
|
"topics": [], |
|
"license": "", |
|
"stars": metadata.get("stargazers_count"), |
|
} |
|
if metadata.get("topics"): |
|
repo_info["topics"] = metadata["topics"] |
|
if metadata.get("license"): |
|
repo_info["license"] = metadata["license"]["spdx_id"] |
|
|
|
|
|
download_url = f"https://api.github.com/repos/{repo_name}/tarball" |
|
tqdm.write(f"[+] Downloading {repo_name}") |
|
try: |
|
response = requests.get(download_url, headers=headers, stream=True) |
|
response.raise_for_status() |
|
except requests.exceptions.HTTPError as e: |
|
tqdm.write(f"[-] Failed to download {repo_name}: {e}") |
|
continue |
|
|
|
|
|
tqdm.write(f"[+] Extracting {repo_name} info") |
|
with tarfile.open(fileobj=response.raw, mode="r|gz") as tar: |
|
for member in tar: |
|
if (member.name.endswith(".py") and member.isfile()) is False: |
|
continue |
|
try: |
|
file_content = tar.extractfile(member).read().decode("utf-8") |
|
code_set, docs_set = extract_code_and_docs(file_content) |
|
|
|
repo_info["funcs"].update(code_set) |
|
repo_info["docs"].update(docs_set) |
|
except UnicodeDecodeError as e: |
|
tqdm.write( |
|
f"[-] UnicodeDecodeError in {member.name}, skipping: \n{e}" |
|
) |
|
except SyntaxError as e: |
|
tqdm.write(f"[-] SyntaxError in {member.name}, skipping: \n{e}") |
|
|
|
extracted_infos.append(repo_info) |
|
|
|
return extracted_infos |
|
|
|
|
|
class RepoEmbeddingPipeline(Pipeline): |
|
def __init__(self, github_token=None, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
self.github_token = github_token |
|
if self.github_token: |
|
print("[+] GitHub token set!") |
|
else: |
|
print( |
|
"[*] Consider setting GitHub token to avoid hitting rate limits. \n" |
|
"For more info, see: " |
|
"https://docs.github.com/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token" |
|
) |
|
|
|
def _sanitize_parameters(self, **kwargs): |
|
preprocess_kwargs = {} |
|
if "github_token" in kwargs: |
|
preprocess_kwargs["github_token"] = kwargs["github_token"] |
|
|
|
_forward_kwargs = {} |
|
if "max_length" in kwargs: |
|
_forward_kwargs["max_length"] = kwargs["max_length"] |
|
if "st_progress" in kwargs: |
|
_forward_kwargs["st_progress"] = kwargs["st_progress"] |
|
|
|
return preprocess_kwargs, _forward_kwargs, {} |
|
|
|
def preprocess(self, inputs, github_token=None): |
|
if isinstance(inputs, str): |
|
inputs = [inputs] |
|
|
|
headers = {"Accept": "application/vnd.github+json"} |
|
token = github_token or self.github_token |
|
if token: |
|
headers["Authorization"] = f"Bearer {token}" |
|
|
|
extracted_infos = download_and_extract(inputs, headers=headers) |
|
|
|
return extracted_infos |
|
|
|
def encode(self, text, max_length): |
|
""" |
|
Generates an embedding for a input string. |
|
|
|
Parameters: |
|
|
|
* `text`- The input string to be embedded. |
|
* `max_length`- The maximum total source sequence length after tokenization. |
|
""" |
|
assert max_length < 1024 |
|
|
|
tokenizer = self.tokenizer |
|
|
|
tokens = ( |
|
[tokenizer.cls_token, "<encoder-only>", tokenizer.sep_token] |
|
+ tokenizer.tokenize(text)[: max_length - 4] |
|
+ [tokenizer.sep_token] |
|
) |
|
tokens_id = tokenizer.convert_tokens_to_ids(tokens) |
|
source_ids = torch.tensor([tokens_id]).to(self.device) |
|
|
|
token_embeddings = self.model(source_ids)[0] |
|
sentence_embeddings = token_embeddings.mean(dim=1) |
|
|
|
return sentence_embeddings |
|
|
|
def _forward(self, extracted_infos, max_length=512, st_progress=None): |
|
repo_dataset = [] |
|
num_texts = sum(len(x["funcs"]) + len(x["docs"]) for x in extracted_infos) |
|
with tqdm(total=num_texts) as pbar: |
|
for repo_info in extracted_infos: |
|
repo_name = repo_info["name"] |
|
entry = { |
|
"name": repo_name, |
|
"topics": repo_info["topics"], |
|
"license": repo_info["license"], |
|
"stars": repo_info["stars"], |
|
} |
|
|
|
pbar.set_description(f"Processing {repo_name}") |
|
|
|
tqdm.write(f"[*] Generating embeddings for {repo_name}") |
|
|
|
code_embeddings = [] |
|
for func in repo_info["funcs"]: |
|
code_embeddings.append( |
|
[func, self.encode(func, max_length).squeeze().tolist()] |
|
) |
|
|
|
pbar.update(1) |
|
if st_progress: |
|
st_progress.progress(pbar.n / pbar.total) |
|
|
|
entry["code_embeddings"] = code_embeddings |
|
entry["mean_code_embedding"] = ( |
|
np.mean([x[1] for x in code_embeddings], axis=0).tolist() |
|
if code_embeddings |
|
else None |
|
) |
|
|
|
doc_embeddings = [] |
|
for doc in repo_info["docs"]: |
|
doc_embeddings.append( |
|
[doc, self.encode(doc, max_length).squeeze().tolist()] |
|
) |
|
|
|
pbar.update(1) |
|
if st_progress: |
|
st_progress.progress(pbar.n / pbar.total) |
|
|
|
entry["doc_embeddings"] = doc_embeddings |
|
entry["mean_doc_embedding"] = ( |
|
np.mean([x[1] for x in doc_embeddings], axis=0).tolist() |
|
if doc_embeddings |
|
else None |
|
) |
|
|
|
repo_dataset.append(entry) |
|
|
|
return repo_dataset |
|
|
|
def postprocess(self, repo_dataset): |
|
return repo_dataset |
|
|