--- license: apache-2.0 base_model: distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERT_B08 results: [] --- # BERT_B08 This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3054 - Precision: 0.6335 - Recall: 0.6849 - F1: 0.6582 - Accuracy: 0.9094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3792 | 1.0 | 92 | 0.3446 | 0.6004 | 0.5913 | 0.5958 | 0.8982 | | 0.2782 | 2.0 | 184 | 0.2911 | 0.6485 | 0.6664 | 0.6573 | 0.9110 | | 0.1736 | 3.0 | 276 | 0.2886 | 0.6570 | 0.6730 | 0.6649 | 0.9123 | | 0.1434 | 4.0 | 368 | 0.2974 | 0.6481 | 0.6763 | 0.6619 | 0.9109 | | 0.1422 | 5.0 | 460 | 0.3054 | 0.6335 | 0.6849 | 0.6582 | 0.9094 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3