LearnItAnyway commited on
Commit
a979a2e
1 Parent(s): 541ba47

First model version

Browse files
added_tokens.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "### ASSISTANT: ": 32002,
3
+ "### USER: ": 32001,
4
+ "<im_patch>": 32003,
5
+ "<pad>": 32000
6
+ }
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./Llama-2-7b-hf",
3
+ "architectures": [
4
+ "LlavaLlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "freeze_mm_mlp_adapter": false,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "mm_hidden_size": 1024,
15
+ "mm_use_im_start_end": false,
16
+ "mm_vision_select_layer": -1,
17
+ "mm_vision_tower": "openai/clip-vit-large-patch14",
18
+ "model_type": "llava",
19
+ "num_attention_heads": 32,
20
+ "num_hidden_layers": 32,
21
+ "num_key_value_heads": 32,
22
+ "pad_token_id": 0,
23
+ "pretraining_tp": 1,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_scaling": null,
26
+ "sep_image_conv_front": false,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "float16",
29
+ "transformers_version": "4.29.2",
30
+ "tune_mm_mlp_adapter": false,
31
+ "use_cache": false,
32
+ "use_mm_proj": true,
33
+ "vocab_size": 32004
34
+ }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 32000,
6
+ "temperature": 0.9,
7
+ "top_p": 0.6,
8
+ "transformers_version": "4.29.2"
9
+ }
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31ebd6bc51bdcf307bb4fb26c256804416842d346425e01cc291e357ee550433
3
+ size 9976664254
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bfbc1e1008e73c02289db8ccaf3080a1810d11bc67d2772454e54b45bd99b91
3
+ size 3508744695
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13485297664
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
268
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
269
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
270
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
271
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
272
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
273
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
274
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
275
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
276
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
277
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
278
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
279
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
280
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
281
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
282
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
283
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
284
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
285
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
286
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
287
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
288
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
289
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
290
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
291
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
292
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
293
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
294
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
295
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
296
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
297
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
298
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
299
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
300
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
301
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
302
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
303
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
304
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
305
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
306
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
307
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
308
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
309
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
310
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
311
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
312
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
313
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
314
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
315
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
316
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
317
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
318
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
319
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
320
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
321
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
322
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
323
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
324
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
325
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
326
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
327
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
328
+ "model.mm_projector.bias": "pytorch_model-00002-of-00002.bin",
329
+ "model.mm_projector.weight": "pytorch_model-00002-of-00002.bin",
330
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin"
331
+ }
332
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "<unk>",
5
+ "unk_token": "<unk>"
6
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": false,
22
+ "model_max_length": 2048,
23
+ "pad_token": null,
24
+ "padding_side": "right",
25
+ "sp_model_kwargs": {},
26
+ "tokenizer_class": "LlamaTokenizer",
27
+ "unk_token": {
28
+ "__type": "AddedToken",
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
trainer_state.json ADDED
@@ -0,0 +1,4087 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9985710993316432,
5
+ "global_step": 677,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 0.0,
13
+ "loss": 1.5272,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.0,
18
+ "learning_rate": 0.0,
19
+ "loss": 1.4949,
20
+ "step": 2
21
+ },
22
+ {
23
+ "epoch": 0.0,
24
+ "learning_rate": 0.0,
25
+ "loss": 1.5184,
26
+ "step": 3
27
+ },
28
+ {
29
+ "epoch": 0.01,
30
+ "learning_rate": 0.0,
31
+ "loss": 1.5134,
32
+ "step": 4
33
+ },
34
+ {
35
+ "epoch": 0.01,
36
+ "learning_rate": 0.0,
37
+ "loss": 1.5608,
38
+ "step": 5
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "learning_rate": 0.0,
43
+ "loss": 1.5162,
44
+ "step": 6
45
+ },
46
+ {
47
+ "epoch": 0.01,
48
+ "learning_rate": 0.0,
49
+ "loss": 1.508,
50
+ "step": 7
51
+ },
52
+ {
53
+ "epoch": 0.01,
54
+ "learning_rate": 0.0,
55
+ "loss": 1.5244,
56
+ "step": 8
57
+ },
58
+ {
59
+ "epoch": 0.01,
60
+ "learning_rate": 0.0,
61
+ "loss": 1.5005,
62
+ "step": 9
63
+ },
64
+ {
65
+ "epoch": 0.01,
66
+ "learning_rate": 0.0,
67
+ "loss": 1.5176,
68
+ "step": 10
69
+ },
70
+ {
71
+ "epoch": 0.02,
72
+ "learning_rate": 0.0,
73
+ "loss": 1.5584,
74
+ "step": 11
75
+ },
76
+ {
77
+ "epoch": 0.02,
78
+ "learning_rate": 0.0,
79
+ "loss": 1.5084,
80
+ "step": 12
81
+ },
82
+ {
83
+ "epoch": 0.02,
84
+ "learning_rate": 0.0,
85
+ "loss": 1.5425,
86
+ "step": 13
87
+ },
88
+ {
89
+ "epoch": 0.02,
90
+ "learning_rate": 0.0,
91
+ "loss": 1.4883,
92
+ "step": 14
93
+ },
94
+ {
95
+ "epoch": 0.02,
96
+ "learning_rate": 0.0,
97
+ "loss": 1.4934,
98
+ "step": 15
99
+ },
100
+ {
101
+ "epoch": 0.02,
102
+ "learning_rate": 0.0,
103
+ "loss": 1.4992,
104
+ "step": 16
105
+ },
106
+ {
107
+ "epoch": 0.03,
108
+ "learning_rate": 0.0,
109
+ "loss": 1.5702,
110
+ "step": 17
111
+ },
112
+ {
113
+ "epoch": 0.03,
114
+ "learning_rate": 0.0,
115
+ "loss": 1.5081,
116
+ "step": 18
117
+ },
118
+ {
119
+ "epoch": 0.03,
120
+ "learning_rate": 2e-05,
121
+ "loss": 1.4992,
122
+ "step": 19
123
+ },
124
+ {
125
+ "epoch": 0.03,
126
+ "learning_rate": 1.9999892011980525e-05,
127
+ "loss": 1.5015,
128
+ "step": 20
129
+ },
130
+ {
131
+ "epoch": 0.03,
132
+ "learning_rate": 1.9999568050254373e-05,
133
+ "loss": 1.4444,
134
+ "step": 21
135
+ },
136
+ {
137
+ "epoch": 0.03,
138
+ "learning_rate": 1.999902812181835e-05,
139
+ "loss": 1.3563,
140
+ "step": 22
141
+ },
142
+ {
143
+ "epoch": 0.03,
144
+ "learning_rate": 1.9998272238333606e-05,
145
+ "loss": 1.2379,
146
+ "step": 23
147
+ },
148
+ {
149
+ "epoch": 0.04,
150
+ "learning_rate": 1.9997300416125426e-05,
151
+ "loss": 1.1627,
152
+ "step": 24
153
+ },
154
+ {
155
+ "epoch": 0.04,
156
+ "learning_rate": 1.999611267618283e-05,
157
+ "loss": 1.1329,
158
+ "step": 25
159
+ },
160
+ {
161
+ "epoch": 0.04,
162
+ "learning_rate": 1.9994709044158157e-05,
163
+ "loss": 1.0667,
164
+ "step": 26
165
+ },
166
+ {
167
+ "epoch": 0.04,
168
+ "learning_rate": 1.99930895503665e-05,
169
+ "loss": 1.0723,
170
+ "step": 27
171
+ },
172
+ {
173
+ "epoch": 0.04,
174
+ "learning_rate": 1.9991254229785043e-05,
175
+ "loss": 1.0248,
176
+ "step": 28
177
+ },
178
+ {
179
+ "epoch": 0.04,
180
+ "learning_rate": 1.998920312205231e-05,
181
+ "loss": 1.0191,
182
+ "step": 29
183
+ },
184
+ {
185
+ "epoch": 0.04,
186
+ "learning_rate": 1.9986936271467316e-05,
187
+ "loss": 1.0021,
188
+ "step": 30
189
+ },
190
+ {
191
+ "epoch": 0.05,
192
+ "learning_rate": 1.99844537269886e-05,
193
+ "loss": 0.9416,
194
+ "step": 31
195
+ },
196
+ {
197
+ "epoch": 0.05,
198
+ "learning_rate": 1.9981755542233175e-05,
199
+ "loss": 0.9749,
200
+ "step": 32
201
+ },
202
+ {
203
+ "epoch": 0.05,
204
+ "learning_rate": 1.9978841775475368e-05,
205
+ "loss": 0.938,
206
+ "step": 33
207
+ },
208
+ {
209
+ "epoch": 0.05,
210
+ "learning_rate": 1.997571248964556e-05,
211
+ "loss": 0.9259,
212
+ "step": 34
213
+ },
214
+ {
215
+ "epoch": 0.05,
216
+ "learning_rate": 1.9972367752328824e-05,
217
+ "loss": 0.8736,
218
+ "step": 35
219
+ },
220
+ {
221
+ "epoch": 0.05,
222
+ "learning_rate": 1.9968807635763472e-05,
223
+ "loss": 0.852,
224
+ "step": 36
225
+ },
226
+ {
227
+ "epoch": 0.05,
228
+ "learning_rate": 1.9965032216839493e-05,
229
+ "loss": 0.8858,
230
+ "step": 37
231
+ },
232
+ {
233
+ "epoch": 0.06,
234
+ "learning_rate": 1.996104157709689e-05,
235
+ "loss": 0.864,
236
+ "step": 38
237
+ },
238
+ {
239
+ "epoch": 0.06,
240
+ "learning_rate": 1.9956835802723916e-05,
241
+ "loss": 0.8736,
242
+ "step": 39
243
+ },
244
+ {
245
+ "epoch": 0.06,
246
+ "learning_rate": 1.9952414984555225e-05,
247
+ "loss": 0.8471,
248
+ "step": 40
249
+ },
250
+ {
251
+ "epoch": 0.06,
252
+ "learning_rate": 1.994777921806989e-05,
253
+ "loss": 0.8156,
254
+ "step": 41
255
+ },
256
+ {
257
+ "epoch": 0.06,
258
+ "learning_rate": 1.9942928603389366e-05,
259
+ "loss": 0.8051,
260
+ "step": 42
261
+ },
262
+ {
263
+ "epoch": 0.06,
264
+ "learning_rate": 1.9937863245275303e-05,
265
+ "loss": 0.7974,
266
+ "step": 43
267
+ },
268
+ {
269
+ "epoch": 0.06,
270
+ "learning_rate": 1.9932583253127302e-05,
271
+ "loss": 0.8034,
272
+ "step": 44
273
+ },
274
+ {
275
+ "epoch": 0.07,
276
+ "learning_rate": 1.992708874098054e-05,
277
+ "loss": 0.7963,
278
+ "step": 45
279
+ },
280
+ {
281
+ "epoch": 0.07,
282
+ "learning_rate": 1.9921379827503316e-05,
283
+ "loss": 0.7613,
284
+ "step": 46
285
+ },
286
+ {
287
+ "epoch": 0.07,
288
+ "learning_rate": 1.991545663599448e-05,
289
+ "loss": 0.7443,
290
+ "step": 47
291
+ },
292
+ {
293
+ "epoch": 0.07,
294
+ "learning_rate": 1.990931929438078e-05,
295
+ "loss": 0.7833,
296
+ "step": 48
297
+ },
298
+ {
299
+ "epoch": 0.07,
300
+ "learning_rate": 1.990296793521408e-05,
301
+ "loss": 0.7663,
302
+ "step": 49
303
+ },
304
+ {
305
+ "epoch": 0.07,
306
+ "learning_rate": 1.989640269566853e-05,
307
+ "loss": 0.745,
308
+ "step": 50
309
+ },
310
+ {
311
+ "epoch": 0.08,
312
+ "learning_rate": 1.9889623717537564e-05,
313
+ "loss": 0.7292,
314
+ "step": 51
315
+ },
316
+ {
317
+ "epoch": 0.08,
318
+ "learning_rate": 1.9882631147230874e-05,
319
+ "loss": 0.7518,
320
+ "step": 52
321
+ },
322
+ {
323
+ "epoch": 0.08,
324
+ "learning_rate": 1.987542513577122e-05,
325
+ "loss": 0.7151,
326
+ "step": 53
327
+ },
328
+ {
329
+ "epoch": 0.08,
330
+ "learning_rate": 1.9868005838791185e-05,
331
+ "loss": 0.7377,
332
+ "step": 54
333
+ },
334
+ {
335
+ "epoch": 0.08,
336
+ "learning_rate": 1.9860373416529804e-05,
337
+ "loss": 0.7527,
338
+ "step": 55
339
+ },
340
+ {
341
+ "epoch": 0.08,
342
+ "learning_rate": 1.985252803382911e-05,
343
+ "loss": 0.7243,
344
+ "step": 56
345
+ },
346
+ {
347
+ "epoch": 0.08,
348
+ "learning_rate": 1.984446986013057e-05,
349
+ "loss": 0.719,
350
+ "step": 57
351
+ },
352
+ {
353
+ "epoch": 0.09,
354
+ "learning_rate": 1.983619906947144e-05,
355
+ "loss": 0.7639,
356
+ "step": 58
357
+ },
358
+ {
359
+ "epoch": 0.09,
360
+ "learning_rate": 1.9827715840480962e-05,
361
+ "loss": 0.7259,
362
+ "step": 59
363
+ },
364
+ {
365
+ "epoch": 0.09,
366
+ "learning_rate": 1.9819020356376562e-05,
367
+ "loss": 0.7116,
368
+ "step": 60
369
+ },
370
+ {
371
+ "epoch": 0.09,
372
+ "learning_rate": 1.9810112804959867e-05,
373
+ "loss": 0.7193,
374
+ "step": 61
375
+ },
376
+ {
377
+ "epoch": 0.09,
378
+ "learning_rate": 1.980099337861264e-05,
379
+ "loss": 0.7253,
380
+ "step": 62
381
+ },
382
+ {
383
+ "epoch": 0.09,
384
+ "learning_rate": 1.9791662274292638e-05,
385
+ "loss": 0.6758,
386
+ "step": 63
387
+ },
388
+ {
389
+ "epoch": 0.09,
390
+ "learning_rate": 1.9782119693529358e-05,
391
+ "loss": 0.6998,
392
+ "step": 64
393
+ },
394
+ {
395
+ "epoch": 0.1,
396
+ "learning_rate": 1.977236584241968e-05,
397
+ "loss": 0.6996,
398
+ "step": 65
399
+ },
400
+ {
401
+ "epoch": 0.1,
402
+ "learning_rate": 1.9762400931623413e-05,
403
+ "loss": 0.6726,
404
+ "step": 66
405
+ },
406
+ {
407
+ "epoch": 0.1,
408
+ "learning_rate": 1.9752225176358757e-05,
409
+ "loss": 0.7184,
410
+ "step": 67
411
+ },
412
+ {
413
+ "epoch": 0.1,
414
+ "learning_rate": 1.9741838796397638e-05,
415
+ "loss": 0.6589,
416
+ "step": 68
417
+ },
418
+ {
419
+ "epoch": 0.1,
420
+ "learning_rate": 1.9731242016060985e-05,
421
+ "loss": 0.6933,
422
+ "step": 69
423
+ },
424
+ {
425
+ "epoch": 0.1,
426
+ "learning_rate": 1.972043506421386e-05,
427
+ "loss": 0.6596,
428
+ "step": 70
429
+ },
430
+ {
431
+ "epoch": 0.1,
432
+ "learning_rate": 1.9709418174260523e-05,
433
+ "loss": 0.6668,
434
+ "step": 71
435
+ },
436
+ {
437
+ "epoch": 0.11,
438
+ "learning_rate": 1.9698191584139402e-05,
439
+ "loss": 0.6776,
440
+ "step": 72
441
+ },
442
+ {
443
+ "epoch": 0.11,
444
+ "learning_rate": 1.9686755536317945e-05,
445
+ "loss": 0.6579,
446
+ "step": 73
447
+ },
448
+ {
449
+ "epoch": 0.11,
450
+ "learning_rate": 1.967511027778738e-05,
451
+ "loss": 0.7176,
452
+ "step": 74
453
+ },
454
+ {
455
+ "epoch": 0.11,
456
+ "learning_rate": 1.9663256060057395e-05,
457
+ "loss": 0.6585,
458
+ "step": 75
459
+ },
460
+ {
461
+ "epoch": 0.11,
462
+ "learning_rate": 1.965119313915068e-05,
463
+ "loss": 0.667,
464
+ "step": 76
465
+ },
466
+ {
467
+ "epoch": 0.11,
468
+ "learning_rate": 1.9638921775597428e-05,
469
+ "loss": 0.6656,
470
+ "step": 77
471
+ },
472
+ {
473
+ "epoch": 0.12,
474
+ "learning_rate": 1.9626442234429684e-05,
475
+ "loss": 0.6649,
476
+ "step": 78
477
+ },
478
+ {
479
+ "epoch": 0.12,
480
+ "learning_rate": 1.961375478517564e-05,
481
+ "loss": 0.6594,
482
+ "step": 79
483
+ },
484
+ {
485
+ "epoch": 0.12,
486
+ "learning_rate": 1.9600859701853796e-05,
487
+ "loss": 0.6573,
488
+ "step": 80
489
+ },
490
+ {
491
+ "epoch": 0.12,
492
+ "learning_rate": 1.958775726296706e-05,
493
+ "loss": 0.6532,
494
+ "step": 81
495
+ },
496
+ {
497
+ "epoch": 0.12,
498
+ "learning_rate": 1.9574447751496706e-05,
499
+ "loss": 0.6542,
500
+ "step": 82
501
+ },
502
+ {
503
+ "epoch": 0.12,
504
+ "learning_rate": 1.95609314548963e-05,
505
+ "loss": 0.6272,
506
+ "step": 83
507
+ },
508
+ {
509
+ "epoch": 0.12,
510
+ "learning_rate": 1.954720866508546e-05,
511
+ "loss": 0.6486,
512
+ "step": 84
513
+ },
514
+ {
515
+ "epoch": 0.13,
516
+ "learning_rate": 1.953327967844356e-05,
517
+ "loss": 0.6347,
518
+ "step": 85
519
+ },
520
+ {
521
+ "epoch": 0.13,
522
+ "learning_rate": 1.9519144795803342e-05,
523
+ "loss": 0.657,
524
+ "step": 86
525
+ },
526
+ {
527
+ "epoch": 0.13,
528
+ "learning_rate": 1.95048043224444e-05,
529
+ "loss": 0.6321,
530
+ "step": 87
531
+ },
532
+ {
533
+ "epoch": 0.13,
534
+ "learning_rate": 1.94902585680866e-05,
535
+ "loss": 0.6416,
536
+ "step": 88
537
+ },
538
+ {
539
+ "epoch": 0.13,
540
+ "learning_rate": 1.9475507846883377e-05,
541
+ "loss": 0.6549,
542
+ "step": 89
543
+ },
544
+ {
545
+ "epoch": 0.13,
546
+ "learning_rate": 1.9460552477414972e-05,
547
+ "loss": 0.6452,
548
+ "step": 90
549
+ },
550
+ {
551
+ "epoch": 0.13,
552
+ "learning_rate": 1.9445392782681523e-05,
553
+ "loss": 0.6469,
554
+ "step": 91
555
+ },
556
+ {
557
+ "epoch": 0.14,
558
+ "learning_rate": 1.9430029090096118e-05,
559
+ "loss": 0.6323,
560
+ "step": 92
561
+ },
562
+ {
563
+ "epoch": 0.14,
564
+ "learning_rate": 1.94144617314777e-05,
565
+ "loss": 0.6191,
566
+ "step": 93
567
+ },
568
+ {
569
+ "epoch": 0.14,
570
+ "learning_rate": 1.939869104304392e-05,
571
+ "loss": 0.6201,
572
+ "step": 94
573
+ },
574
+ {
575
+ "epoch": 0.14,
576
+ "learning_rate": 1.9382717365403854e-05,
577
+ "loss": 0.6576,
578
+ "step": 95
579
+ },
580
+ {
581
+ "epoch": 0.14,
582
+ "learning_rate": 1.9366541043550667e-05,
583
+ "loss": 0.6481,
584
+ "step": 96
585
+ },
586
+ {
587
+ "epoch": 0.14,
588
+ "learning_rate": 1.9350162426854152e-05,
589
+ "loss": 0.5918,
590
+ "step": 97
591
+ },
592
+ {
593
+ "epoch": 0.14,
594
+ "learning_rate": 1.933358186905318e-05,
595
+ "loss": 0.6981,
596
+ "step": 98
597
+ },
598
+ {
599
+ "epoch": 0.15,
600
+ "learning_rate": 1.9316799728248074e-05,
601
+ "loss": 0.6157,
602
+ "step": 99
603
+ },
604
+ {
605
+ "epoch": 0.15,
606
+ "learning_rate": 1.9299816366892865e-05,
607
+ "loss": 0.6427,
608
+ "step": 100
609
+ },
610
+ {
611
+ "epoch": 0.15,
612
+ "learning_rate": 1.9282632151787462e-05,
613
+ "loss": 0.6758,
614
+ "step": 101
615
+ },
616
+ {
617
+ "epoch": 0.15,
618
+ "learning_rate": 1.9265247454069736e-05,
619
+ "loss": 0.6384,
620
+ "step": 102
621
+ },
622
+ {
623
+ "epoch": 0.15,
624
+ "learning_rate": 1.924766264920751e-05,
625
+ "loss": 0.5973,
626
+ "step": 103
627
+ },
628
+ {
629
+ "epoch": 0.15,
630
+ "learning_rate": 1.922987811699042e-05,
631
+ "loss": 0.6351,
632
+ "step": 104
633
+ },
634
+ {
635
+ "epoch": 0.15,
636
+ "learning_rate": 1.9211894241521757e-05,
637
+ "loss": 0.5967,
638
+ "step": 105
639
+ },
640
+ {
641
+ "epoch": 0.16,
642
+ "learning_rate": 1.9193711411210138e-05,
643
+ "loss": 0.6282,
644
+ "step": 106
645
+ },
646
+ {
647
+ "epoch": 0.16,
648
+ "learning_rate": 1.917533001876113e-05,
649
+ "loss": 0.6332,
650
+ "step": 107
651
+ },
652
+ {
653
+ "epoch": 0.16,
654
+ "learning_rate": 1.9156750461168768e-05,
655
+ "loss": 0.6619,
656
+ "step": 108
657
+ },
658
+ {
659
+ "epoch": 0.16,
660
+ "learning_rate": 1.9137973139706973e-05,
661
+ "loss": 0.6336,
662
+ "step": 109
663
+ },
664
+ {
665
+ "epoch": 0.16,
666
+ "learning_rate": 1.91189984599209e-05,
667
+ "loss": 0.6117,
668
+ "step": 110
669
+ },
670
+ {
671
+ "epoch": 0.16,
672
+ "learning_rate": 1.9099826831618168e-05,
673
+ "loss": 0.6246,
674
+ "step": 111
675
+ },
676
+ {
677
+ "epoch": 0.17,
678
+ "learning_rate": 1.908045866886001e-05,
679
+ "loss": 0.6245,
680
+ "step": 112
681
+ },
682
+ {
683
+ "epoch": 0.17,
684
+ "learning_rate": 1.9060894389952328e-05,
685
+ "loss": 0.573,
686
+ "step": 113
687
+ },
688
+ {
689
+ "epoch": 0.17,
690
+ "learning_rate": 1.9041134417436674e-05,
691
+ "loss": 0.6469,
692
+ "step": 114
693
+ },
694
+ {
695
+ "epoch": 0.17,
696
+ "learning_rate": 1.9021179178081107e-05,
697
+ "loss": 0.6374,
698
+ "step": 115
699
+ },
700
+ {
701
+ "epoch": 0.17,
702
+ "learning_rate": 1.9001029102870982e-05,
703
+ "loss": 0.5943,
704
+ "step": 116
705
+ },
706
+ {
707
+ "epoch": 0.17,
708
+ "learning_rate": 1.898068462699964e-05,
709
+ "loss": 0.6565,
710
+ "step": 117
711
+ },
712
+ {
713
+ "epoch": 0.17,
714
+ "learning_rate": 1.8960146189859014e-05,
715
+ "loss": 0.611,
716
+ "step": 118
717
+ },
718
+ {
719
+ "epoch": 0.18,
720
+ "learning_rate": 1.8939414235030137e-05,
721
+ "loss": 0.5979,
722
+ "step": 119
723
+ },
724
+ {
725
+ "epoch": 0.18,
726
+ "learning_rate": 1.891848921027355e-05,
727
+ "loss": 0.5958,
728
+ "step": 120
729
+ },
730
+ {
731
+ "epoch": 0.18,
732
+ "learning_rate": 1.889737156751965e-05,
733
+ "loss": 0.6053,
734
+ "step": 121
735
+ },
736
+ {
737
+ "epoch": 0.18,
738
+ "learning_rate": 1.887606176285893e-05,
739
+ "loss": 0.5823,
740
+ "step": 122
741
+ },
742
+ {
743
+ "epoch": 0.18,
744
+ "learning_rate": 1.8854560256532098e-05,
745
+ "loss": 0.6342,
746
+ "step": 123
747
+ },
748
+ {
749
+ "epoch": 0.18,
750
+ "learning_rate": 1.883286751292018e-05,
751
+ "loss": 0.6615,
752
+ "step": 124
753
+ },
754
+ {
755
+ "epoch": 0.18,
756
+ "learning_rate": 1.8810984000534457e-05,
757
+ "loss": 0.6333,
758
+ "step": 125
759
+ },
760
+ {
761
+ "epoch": 0.19,
762
+ "learning_rate": 1.8788910192006363e-05,
763
+ "loss": 0.5888,
764
+ "step": 126
765
+ },
766
+ {
767
+ "epoch": 0.19,
768
+ "learning_rate": 1.8766646564077265e-05,
769
+ "loss": 0.5922,
770
+ "step": 127
771
+ },
772
+ {
773
+ "epoch": 0.19,
774
+ "learning_rate": 1.8744193597588185e-05,
775
+ "loss": 0.5927,
776
+ "step": 128
777
+ },
778
+ {
779
+ "epoch": 0.19,
780
+ "learning_rate": 1.8721551777469397e-05,
781
+ "loss": 0.5726,
782
+ "step": 129
783
+ },
784
+ {
785
+ "epoch": 0.19,
786
+ "learning_rate": 1.869872159272997e-05,
787
+ "loss": 0.616,
788
+ "step": 130
789
+ },
790
+ {
791
+ "epoch": 0.19,
792
+ "learning_rate": 1.8675703536447178e-05,
793
+ "loss": 0.5978,
794
+ "step": 131
795
+ },
796
+ {
797
+ "epoch": 0.19,
798
+ "learning_rate": 1.8652498105755898e-05,
799
+ "loss": 0.5984,
800
+ "step": 132
801
+ },
802
+ {
803
+ "epoch": 0.2,
804
+ "learning_rate": 1.862910580183782e-05,
805
+ "loss": 0.6455,
806
+ "step": 133
807
+ },
808
+ {
809
+ "epoch": 0.2,
810
+ "learning_rate": 1.8605527129910663e-05,
811
+ "loss": 0.5821,
812
+ "step": 134
813
+ },
814
+ {
815
+ "epoch": 0.2,
816
+ "learning_rate": 1.858176259921724e-05,
817
+ "loss": 0.6221,
818
+ "step": 135
819
+ },
820
+ {
821
+ "epoch": 0.2,
822
+ "learning_rate": 1.8557812723014476e-05,
823
+ "loss": 0.6218,
824
+ "step": 136
825
+ },
826
+ {
827
+ "epoch": 0.2,
828
+ "learning_rate": 1.853367801856231e-05,
829
+ "loss": 0.6202,
830
+ "step": 137
831
+ },
832
+ {
833
+ "epoch": 0.2,
834
+ "learning_rate": 1.8509359007112523e-05,
835
+ "loss": 0.6062,
836
+ "step": 138
837
+ },
838
+ {
839
+ "epoch": 0.21,
840
+ "learning_rate": 1.8484856213897496e-05,
841
+ "loss": 0.6144,
842
+ "step": 139
843
+ },
844
+ {
845
+ "epoch": 0.21,
846
+ "learning_rate": 1.8460170168118857e-05,
847
+ "loss": 0.6027,
848
+ "step": 140
849
+ },
850
+ {
851
+ "epoch": 0.21,
852
+ "learning_rate": 1.843530140293603e-05,
853
+ "loss": 0.5999,
854
+ "step": 141
855
+ },
856
+ {
857
+ "epoch": 0.21,
858
+ "learning_rate": 1.841025045545477e-05,
859
+ "loss": 0.574,
860
+ "step": 142
861
+ },
862
+ {
863
+ "epoch": 0.21,
864
+ "learning_rate": 1.8385017866715507e-05,
865
+ "loss": 0.5678,
866
+ "step": 143
867
+ },
868
+ {
869
+ "epoch": 0.21,
870
+ "learning_rate": 1.8359604181681703e-05,
871
+ "loss": 0.6106,
872
+ "step": 144
873
+ },
874
+ {
875
+ "epoch": 0.21,
876
+ "learning_rate": 1.833400994922806e-05,
877
+ "loss": 0.5789,
878
+ "step": 145
879
+ },
880
+ {
881
+ "epoch": 0.22,
882
+ "learning_rate": 1.8308235722128674e-05,
883
+ "loss": 0.5799,
884
+ "step": 146
885
+ },
886
+ {
887
+ "epoch": 0.22,
888
+ "learning_rate": 1.8282282057045087e-05,
889
+ "loss": 0.6149,
890
+ "step": 147
891
+ },
892
+ {
893
+ "epoch": 0.22,
894
+ "learning_rate": 1.8256149514514284e-05,
895
+ "loss": 0.5768,
896
+ "step": 148
897
+ },
898
+ {
899
+ "epoch": 0.22,
900
+ "learning_rate": 1.8229838658936566e-05,
901
+ "loss": 0.5947,
902
+ "step": 149
903
+ },
904
+ {
905
+ "epoch": 0.22,
906
+ "learning_rate": 1.8203350058563366e-05,
907
+ "loss": 0.5843,
908
+ "step": 150
909
+ },
910
+ {
911
+ "epoch": 0.22,
912
+ "learning_rate": 1.8176684285484985e-05,
913
+ "loss": 0.5966,
914
+ "step": 151
915
+ },
916
+ {
917
+ "epoch": 0.22,
918
+ "learning_rate": 1.814984191561823e-05,
919
+ "loss": 0.5823,
920
+ "step": 152
921
+ },
922
+ {
923
+ "epoch": 0.23,
924
+ "learning_rate": 1.8122823528693966e-05,
925
+ "loss": 0.6425,
926
+ "step": 153
927
+ },
928
+ {
929
+ "epoch": 0.23,
930
+ "learning_rate": 1.809562970824462e-05,
931
+ "loss": 0.5965,
932
+ "step": 154
933
+ },
934
+ {
935
+ "epoch": 0.23,
936
+ "learning_rate": 1.8068261041591548e-05,
937
+ "loss": 0.5852,
938
+ "step": 155
939
+ },
940
+ {
941
+ "epoch": 0.23,
942
+ "learning_rate": 1.8040718119832378e-05,
943
+ "loss": 0.5719,
944
+ "step": 156
945
+ },
946
+ {
947
+ "epoch": 0.23,
948
+ "learning_rate": 1.8013001537828213e-05,
949
+ "loss": 0.6235,
950
+ "step": 157
951
+ },
952
+ {
953
+ "epoch": 0.23,
954
+ "learning_rate": 1.7985111894190827e-05,
955
+ "loss": 0.6111,
956
+ "step": 158
957
+ },
958
+ {
959
+ "epoch": 0.23,
960
+ "learning_rate": 1.7957049791269684e-05,
961
+ "loss": 0.5686,
962
+ "step": 159
963
+ },
964
+ {
965
+ "epoch": 0.24,
966
+ "learning_rate": 1.7928815835138976e-05,
967
+ "loss": 0.5974,
968
+ "step": 160
969
+ },
970
+ {
971
+ "epoch": 0.24,
972
+ "learning_rate": 1.79004106355845e-05,
973
+ "loss": 0.6141,
974
+ "step": 161
975
+ },
976
+ {
977
+ "epoch": 0.24,
978
+ "learning_rate": 1.7871834806090502e-05,
979
+ "loss": 0.5686,
980
+ "step": 162
981
+ },
982
+ {
983
+ "epoch": 0.24,
984
+ "learning_rate": 1.7843088963826437e-05,
985
+ "loss": 0.5842,
986
+ "step": 163
987
+ },
988
+ {
989
+ "epoch": 0.24,
990
+ "learning_rate": 1.7814173729633607e-05,
991
+ "loss": 0.572,
992
+ "step": 164
993
+ },
994
+ {
995
+ "epoch": 0.24,
996
+ "learning_rate": 1.7785089728011798e-05,
997
+ "loss": 0.5781,
998
+ "step": 165
999
+ },
1000
+ {
1001
+ "epoch": 0.24,
1002
+ "learning_rate": 1.775583758710575e-05,
1003
+ "loss": 0.5929,
1004
+ "step": 166
1005
+ },
1006
+ {
1007
+ "epoch": 0.25,
1008
+ "learning_rate": 1.772641793869162e-05,
1009
+ "loss": 0.5732,
1010
+ "step": 167
1011
+ },
1012
+ {
1013
+ "epoch": 0.25,
1014
+ "learning_rate": 1.7696831418163318e-05,
1015
+ "loss": 0.5995,
1016
+ "step": 168
1017
+ },
1018
+ {
1019
+ "epoch": 0.25,
1020
+ "learning_rate": 1.7667078664518796e-05,
1021
+ "loss": 0.5693,
1022
+ "step": 169
1023
+ },
1024
+ {
1025
+ "epoch": 0.25,
1026
+ "learning_rate": 1.763716032034624e-05,
1027
+ "loss": 0.573,
1028
+ "step": 170
1029
+ },
1030
+ {
1031
+ "epoch": 0.25,
1032
+ "learning_rate": 1.7607077031810204e-05,
1033
+ "loss": 0.576,
1034
+ "step": 171
1035
+ },
1036
+ {
1037
+ "epoch": 0.25,
1038
+ "learning_rate": 1.7576829448637628e-05,
1039
+ "loss": 0.5658,
1040
+ "step": 172
1041
+ },
1042
+ {
1043
+ "epoch": 0.26,
1044
+ "learning_rate": 1.7546418224103838e-05,
1045
+ "loss": 0.5602,
1046
+ "step": 173
1047
+ },
1048
+ {
1049
+ "epoch": 0.26,
1050
+ "learning_rate": 1.7515844015018416e-05,
1051
+ "loss": 0.5764,
1052
+ "step": 174
1053
+ },
1054
+ {
1055
+ "epoch": 0.26,
1056
+ "learning_rate": 1.7485107481711014e-05,
1057
+ "loss": 0.5784,
1058
+ "step": 175
1059
+ },
1060
+ {
1061
+ "epoch": 0.26,
1062
+ "learning_rate": 1.7454209288017105e-05,
1063
+ "loss": 0.5901,
1064
+ "step": 176
1065
+ },
1066
+ {
1067
+ "epoch": 0.26,
1068
+ "learning_rate": 1.7423150101263645e-05,
1069
+ "loss": 0.5796,
1070
+ "step": 177
1071
+ },
1072
+ {
1073
+ "epoch": 0.26,
1074
+ "learning_rate": 1.7391930592254636e-05,
1075
+ "loss": 0.5961,
1076
+ "step": 178
1077
+ },
1078
+ {
1079
+ "epoch": 0.26,
1080
+ "learning_rate": 1.7360551435256673e-05,
1081
+ "loss": 0.5925,
1082
+ "step": 179
1083
+ },
1084
+ {
1085
+ "epoch": 0.27,
1086
+ "learning_rate": 1.7329013307984363e-05,
1087
+ "loss": 0.601,
1088
+ "step": 180
1089
+ },
1090
+ {
1091
+ "epoch": 0.27,
1092
+ "learning_rate": 1.729731689158568e-05,
1093
+ "loss": 0.5748,
1094
+ "step": 181
1095
+ },
1096
+ {
1097
+ "epoch": 0.27,
1098
+ "learning_rate": 1.726546287062727e-05,
1099
+ "loss": 0.5902,
1100
+ "step": 182
1101
+ },
1102
+ {
1103
+ "epoch": 0.27,
1104
+ "learning_rate": 1.7233451933079663e-05,
1105
+ "loss": 0.6207,
1106
+ "step": 183
1107
+ },
1108
+ {
1109
+ "epoch": 0.27,
1110
+ "learning_rate": 1.720128477030241e-05,
1111
+ "loss": 0.5962,
1112
+ "step": 184
1113
+ },
1114
+ {
1115
+ "epoch": 0.27,
1116
+ "learning_rate": 1.7168962077029146e-05,
1117
+ "loss": 0.5547,
1118
+ "step": 185
1119
+ },
1120
+ {
1121
+ "epoch": 0.27,
1122
+ "learning_rate": 1.7136484551352608e-05,
1123
+ "loss": 0.573,
1124
+ "step": 186
1125
+ },
1126
+ {
1127
+ "epoch": 0.28,
1128
+ "learning_rate": 1.7103852894709517e-05,
1129
+ "loss": 0.6041,
1130
+ "step": 187
1131
+ },
1132
+ {
1133
+ "epoch": 0.28,
1134
+ "learning_rate": 1.7071067811865477e-05,
1135
+ "loss": 0.5902,
1136
+ "step": 188
1137
+ },
1138
+ {
1139
+ "epoch": 0.28,
1140
+ "learning_rate": 1.7038130010899716e-05,
1141
+ "loss": 0.5499,
1142
+ "step": 189
1143
+ },
1144
+ {
1145
+ "epoch": 0.28,
1146
+ "learning_rate": 1.7005040203189818e-05,
1147
+ "loss": 0.5892,
1148
+ "step": 190
1149
+ },
1150
+ {
1151
+ "epoch": 0.28,
1152
+ "learning_rate": 1.6971799103396332e-05,
1153
+ "loss": 0.5512,
1154
+ "step": 191
1155
+ },
1156
+ {
1157
+ "epoch": 0.28,
1158
+ "learning_rate": 1.693840742944738e-05,
1159
+ "loss": 0.574,
1160
+ "step": 192
1161
+ },
1162
+ {
1163
+ "epoch": 0.28,
1164
+ "learning_rate": 1.6904865902523098e-05,
1165
+ "loss": 0.5995,
1166
+ "step": 193
1167
+ },
1168
+ {
1169
+ "epoch": 0.29,
1170
+ "learning_rate": 1.68711752470401e-05,
1171
+ "loss": 0.5861,
1172
+ "step": 194
1173
+ },
1174
+ {
1175
+ "epoch": 0.29,
1176
+ "learning_rate": 1.6837336190635824e-05,
1177
+ "loss": 0.5991,
1178
+ "step": 195
1179
+ },
1180
+ {
1181
+ "epoch": 0.29,
1182
+ "learning_rate": 1.6803349464152798e-05,
1183
+ "loss": 0.5985,
1184
+ "step": 196
1185
+ },
1186
+ {
1187
+ "epoch": 0.29,
1188
+ "learning_rate": 1.6769215801622884e-05,
1189
+ "loss": 0.5471,
1190
+ "step": 197
1191
+ },
1192
+ {
1193
+ "epoch": 0.29,
1194
+ "learning_rate": 1.6734935940251404e-05,
1195
+ "loss": 0.5734,
1196
+ "step": 198
1197
+ },
1198
+ {
1199
+ "epoch": 0.29,
1200
+ "learning_rate": 1.6700510620401223e-05,
1201
+ "loss": 0.5515,
1202
+ "step": 199
1203
+ },
1204
+ {
1205
+ "epoch": 0.29,
1206
+ "learning_rate": 1.666594058557677e-05,
1207
+ "loss": 0.6147,
1208
+ "step": 200
1209
+ },
1210
+ {
1211
+ "epoch": 0.3,
1212
+ "learning_rate": 1.6631226582407954e-05,
1213
+ "loss": 0.592,
1214
+ "step": 201
1215
+ },
1216
+ {
1217
+ "epoch": 0.3,
1218
+ "learning_rate": 1.659636936063407e-05,
1219
+ "loss": 0.5551,
1220
+ "step": 202
1221
+ },
1222
+ {
1223
+ "epoch": 0.3,
1224
+ "learning_rate": 1.6561369673087588e-05,
1225
+ "loss": 0.5489,
1226
+ "step": 203
1227
+ },
1228
+ {
1229
+ "epoch": 0.3,
1230
+ "learning_rate": 1.6526228275677892e-05,
1231
+ "loss": 0.5616,
1232
+ "step": 204
1233
+ },
1234
+ {
1235
+ "epoch": 0.3,
1236
+ "learning_rate": 1.649094592737497e-05,
1237
+ "loss": 0.5751,
1238
+ "step": 205
1239
+ },
1240
+ {
1241
+ "epoch": 0.3,
1242
+ "learning_rate": 1.6455523390193e-05,
1243
+ "loss": 0.575,
1244
+ "step": 206
1245
+ },
1246
+ {
1247
+ "epoch": 0.31,
1248
+ "learning_rate": 1.641996142917391e-05,
1249
+ "loss": 0.5901,
1250
+ "step": 207
1251
+ },
1252
+ {
1253
+ "epoch": 0.31,
1254
+ "learning_rate": 1.638426081237085e-05,
1255
+ "loss": 0.581,
1256
+ "step": 208
1257
+ },
1258
+ {
1259
+ "epoch": 0.31,
1260
+ "learning_rate": 1.63484223108316e-05,
1261
+ "loss": 0.585,
1262
+ "step": 209
1263
+ },
1264
+ {
1265
+ "epoch": 0.31,
1266
+ "learning_rate": 1.6312446698581915e-05,
1267
+ "loss": 0.5652,
1268
+ "step": 210
1269
+ },
1270
+ {
1271
+ "epoch": 0.31,
1272
+ "learning_rate": 1.6276334752608823e-05,
1273
+ "loss": 0.5775,
1274
+ "step": 211
1275
+ },
1276
+ {
1277
+ "epoch": 0.31,
1278
+ "learning_rate": 1.624008725284383e-05,
1279
+ "loss": 0.5748,
1280
+ "step": 212
1281
+ },
1282
+ {
1283
+ "epoch": 0.31,
1284
+ "learning_rate": 1.6203704982146073e-05,
1285
+ "loss": 0.5968,
1286
+ "step": 213
1287
+ },
1288
+ {
1289
+ "epoch": 0.32,
1290
+ "learning_rate": 1.6167188726285433e-05,
1291
+ "loss": 0.5698,
1292
+ "step": 214
1293
+ },
1294
+ {
1295
+ "epoch": 0.32,
1296
+ "learning_rate": 1.613053927392553e-05,
1297
+ "loss": 0.5618,
1298
+ "step": 215
1299
+ },
1300
+ {
1301
+ "epoch": 0.32,
1302
+ "learning_rate": 1.6093757416606725e-05,
1303
+ "loss": 0.538,
1304
+ "step": 216
1305
+ },
1306
+ {
1307
+ "epoch": 0.32,
1308
+ "learning_rate": 1.6056843948729e-05,
1309
+ "loss": 0.5684,
1310
+ "step": 217
1311
+ },
1312
+ {
1313
+ "epoch": 0.32,
1314
+ "learning_rate": 1.6019799667534813e-05,
1315
+ "loss": 0.583,
1316
+ "step": 218
1317
+ },
1318
+ {
1319
+ "epoch": 0.32,
1320
+ "learning_rate": 1.5982625373091877e-05,
1321
+ "loss": 0.5659,
1322
+ "step": 219
1323
+ },
1324
+ {
1325
+ "epoch": 0.32,
1326
+ "learning_rate": 1.594532186827588e-05,
1327
+ "loss": 0.5608,
1328
+ "step": 220
1329
+ },
1330
+ {
1331
+ "epoch": 0.33,
1332
+ "learning_rate": 1.5907889958753134e-05,
1333
+ "loss": 0.5544,
1334
+ "step": 221
1335
+ },
1336
+ {
1337
+ "epoch": 0.33,
1338
+ "learning_rate": 1.5870330452963206e-05,
1339
+ "loss": 0.5679,
1340
+ "step": 222
1341
+ },
1342
+ {
1343
+ "epoch": 0.33,
1344
+ "learning_rate": 1.5870330452963206e-05,
1345
+ "loss": 0.5388,
1346
+ "step": 223
1347
+ },
1348
+ {
1349
+ "epoch": 0.33,
1350
+ "learning_rate": 1.5832644162101417e-05,
1351
+ "loss": 0.558,
1352
+ "step": 224
1353
+ },
1354
+ {
1355
+ "epoch": 0.33,
1356
+ "learning_rate": 1.5794831900101352e-05,
1357
+ "loss": 0.5771,
1358
+ "step": 225
1359
+ },
1360
+ {
1361
+ "epoch": 0.33,
1362
+ "learning_rate": 1.5756894483617268e-05,
1363
+ "loss": 0.535,
1364
+ "step": 226
1365
+ },
1366
+ {
1367
+ "epoch": 0.33,
1368
+ "learning_rate": 1.571883273200646e-05,
1369
+ "loss": 0.5397,
1370
+ "step": 227
1371
+ },
1372
+ {
1373
+ "epoch": 0.34,
1374
+ "learning_rate": 1.568064746731156e-05,
1375
+ "loss": 0.5313,
1376
+ "step": 228
1377
+ },
1378
+ {
1379
+ "epoch": 0.34,
1380
+ "learning_rate": 1.564233951424279e-05,
1381
+ "loss": 0.5737,
1382
+ "step": 229
1383
+ },
1384
+ {
1385
+ "epoch": 0.34,
1386
+ "learning_rate": 1.560390970016015e-05,
1387
+ "loss": 0.5334,
1388
+ "step": 230
1389
+ },
1390
+ {
1391
+ "epoch": 0.34,
1392
+ "learning_rate": 1.5565358855055535e-05,
1393
+ "loss": 0.5564,
1394
+ "step": 231
1395
+ },
1396
+ {
1397
+ "epoch": 0.34,
1398
+ "learning_rate": 1.552668781153484e-05,
1399
+ "loss": 0.5812,
1400
+ "step": 232
1401
+ },
1402
+ {
1403
+ "epoch": 0.34,
1404
+ "learning_rate": 1.5487897404799932e-05,
1405
+ "loss": 0.5385,
1406
+ "step": 233
1407
+ },
1408
+ {
1409
+ "epoch": 0.35,
1410
+ "learning_rate": 1.5448988472630654e-05,
1411
+ "loss": 0.5733,
1412
+ "step": 234
1413
+ },
1414
+ {
1415
+ "epoch": 0.35,
1416
+ "learning_rate": 1.5409961855366718e-05,
1417
+ "loss": 0.594,
1418
+ "step": 235
1419
+ },
1420
+ {
1421
+ "epoch": 0.35,
1422
+ "learning_rate": 1.5370818395889536e-05,
1423
+ "loss": 0.5372,
1424
+ "step": 236
1425
+ },
1426
+ {
1427
+ "epoch": 0.35,
1428
+ "learning_rate": 1.533155893960405e-05,
1429
+ "loss": 0.5599,
1430
+ "step": 237
1431
+ },
1432
+ {
1433
+ "epoch": 0.35,
1434
+ "learning_rate": 1.5292184334420434e-05,
1435
+ "loss": 0.5396,
1436
+ "step": 238
1437
+ },
1438
+ {
1439
+ "epoch": 0.35,
1440
+ "learning_rate": 1.5252695430735824e-05,
1441
+ "loss": 0.552,
1442
+ "step": 239
1443
+ },
1444
+ {
1445
+ "epoch": 0.35,
1446
+ "learning_rate": 1.521309308141592e-05,
1447
+ "loss": 0.5583,
1448
+ "step": 240
1449
+ },
1450
+ {
1451
+ "epoch": 0.36,
1452
+ "learning_rate": 1.5173378141776569e-05,
1453
+ "loss": 0.5708,
1454
+ "step": 241
1455
+ },
1456
+ {
1457
+ "epoch": 0.36,
1458
+ "learning_rate": 1.5133551469565313e-05,
1459
+ "loss": 0.5462,
1460
+ "step": 242
1461
+ },
1462
+ {
1463
+ "epoch": 0.36,
1464
+ "learning_rate": 1.5093613924942837e-05,
1465
+ "loss": 0.581,
1466
+ "step": 243
1467
+ },
1468
+ {
1469
+ "epoch": 0.36,
1470
+ "learning_rate": 1.5053566370464416e-05,
1471
+ "loss": 0.5743,
1472
+ "step": 244
1473
+ },
1474
+ {
1475
+ "epoch": 0.36,
1476
+ "learning_rate": 1.5013409671061267e-05,
1477
+ "loss": 0.5609,
1478
+ "step": 245
1479
+ },
1480
+ {
1481
+ "epoch": 0.36,
1482
+ "learning_rate": 1.4973144694021874e-05,
1483
+ "loss": 0.6103,
1484
+ "step": 246
1485
+ },
1486
+ {
1487
+ "epoch": 0.36,
1488
+ "learning_rate": 1.4932772308973267e-05,
1489
+ "loss": 0.561,
1490
+ "step": 247
1491
+ },
1492
+ {
1493
+ "epoch": 0.37,
1494
+ "learning_rate": 1.4892293387862221e-05,
1495
+ "loss": 0.5909,
1496
+ "step": 248
1497
+ },
1498
+ {
1499
+ "epoch": 0.37,
1500
+ "learning_rate": 1.4851708804936449e-05,
1501
+ "loss": 0.5469,
1502
+ "step": 249
1503
+ },
1504
+ {
1505
+ "epoch": 0.37,
1506
+ "learning_rate": 1.4811019436725684e-05,
1507
+ "loss": 0.5435,
1508
+ "step": 250
1509
+ },
1510
+ {
1511
+ "epoch": 0.37,
1512
+ "learning_rate": 1.4770226162022799e-05,
1513
+ "loss": 0.5326,
1514
+ "step": 251
1515
+ },
1516
+ {
1517
+ "epoch": 0.37,
1518
+ "learning_rate": 1.472932986186477e-05,
1519
+ "loss": 0.5658,
1520
+ "step": 252
1521
+ },
1522
+ {
1523
+ "epoch": 0.37,
1524
+ "learning_rate": 1.4688331419513693e-05,
1525
+ "loss": 0.5912,
1526
+ "step": 253
1527
+ },
1528
+ {
1529
+ "epoch": 0.37,
1530
+ "learning_rate": 1.4647231720437687e-05,
1531
+ "loss": 0.5641,
1532
+ "step": 254
1533
+ },
1534
+ {
1535
+ "epoch": 0.38,
1536
+ "learning_rate": 1.4606031652291772e-05,
1537
+ "loss": 0.5332,
1538
+ "step": 255
1539
+ },
1540
+ {
1541
+ "epoch": 0.38,
1542
+ "learning_rate": 1.4564732104898702e-05,
1543
+ "loss": 0.5527,
1544
+ "step": 256
1545
+ },
1546
+ {
1547
+ "epoch": 0.38,
1548
+ "learning_rate": 1.4523333970229741e-05,
1549
+ "loss": 0.5444,
1550
+ "step": 257
1551
+ },
1552
+ {
1553
+ "epoch": 0.38,
1554
+ "learning_rate": 1.4481838142385403e-05,
1555
+ "loss": 0.5516,
1556
+ "step": 258
1557
+ },
1558
+ {
1559
+ "epoch": 0.38,
1560
+ "learning_rate": 1.4440245517576141e-05,
1561
+ "loss": 0.5258,
1562
+ "step": 259
1563
+ },
1564
+ {
1565
+ "epoch": 0.38,
1566
+ "learning_rate": 1.4398556994102996e-05,
1567
+ "loss": 0.5104,
1568
+ "step": 260
1569
+ },
1570
+ {
1571
+ "epoch": 0.38,
1572
+ "learning_rate": 1.4356773472338174e-05,
1573
+ "loss": 0.5477,
1574
+ "step": 261
1575
+ },
1576
+ {
1577
+ "epoch": 0.39,
1578
+ "learning_rate": 1.4314895854705641e-05,
1579
+ "loss": 0.5375,
1580
+ "step": 262
1581
+ },
1582
+ {
1583
+ "epoch": 0.39,
1584
+ "learning_rate": 1.4272925045661583e-05,
1585
+ "loss": 0.5793,
1586
+ "step": 263
1587
+ },
1588
+ {
1589
+ "epoch": 0.39,
1590
+ "learning_rate": 1.4230861951674914e-05,
1591
+ "loss": 0.5597,
1592
+ "step": 264
1593
+ },
1594
+ {
1595
+ "epoch": 0.39,
1596
+ "learning_rate": 1.4188707481207677e-05,
1597
+ "loss": 0.6143,
1598
+ "step": 265
1599
+ },
1600
+ {
1601
+ "epoch": 0.39,
1602
+ "learning_rate": 1.4146462544695428e-05,
1603
+ "loss": 0.5553,
1604
+ "step": 266
1605
+ },
1606
+ {
1607
+ "epoch": 0.39,
1608
+ "learning_rate": 1.410412805452757e-05,
1609
+ "loss": 0.5296,
1610
+ "step": 267
1611
+ },
1612
+ {
1613
+ "epoch": 0.4,
1614
+ "learning_rate": 1.4061704925027653e-05,
1615
+ "loss": 0.5451,
1616
+ "step": 268
1617
+ },
1618
+ {
1619
+ "epoch": 0.4,
1620
+ "learning_rate": 1.4019194072433626e-05,
1621
+ "loss": 0.5559,
1622
+ "step": 269
1623
+ },
1624
+ {
1625
+ "epoch": 0.4,
1626
+ "learning_rate": 1.3976596414878044e-05,
1627
+ "loss": 0.5331,
1628
+ "step": 270
1629
+ },
1630
+ {
1631
+ "epoch": 0.4,
1632
+ "learning_rate": 1.393391287236824e-05,
1633
+ "loss": 0.5572,
1634
+ "step": 271
1635
+ },
1636
+ {
1637
+ "epoch": 0.4,
1638
+ "learning_rate": 1.3891144366766457e-05,
1639
+ "loss": 0.5492,
1640
+ "step": 272
1641
+ },
1642
+ {
1643
+ "epoch": 0.4,
1644
+ "learning_rate": 1.3848291821769944e-05,
1645
+ "loss": 0.502,
1646
+ "step": 273
1647
+ },
1648
+ {
1649
+ "epoch": 0.4,
1650
+ "learning_rate": 1.380535616289099e-05,
1651
+ "loss": 0.5721,
1652
+ "step": 274
1653
+ },
1654
+ {
1655
+ "epoch": 0.41,
1656
+ "learning_rate": 1.3762338317436948e-05,
1657
+ "loss": 0.5543,
1658
+ "step": 275
1659
+ },
1660
+ {
1661
+ "epoch": 0.41,
1662
+ "learning_rate": 1.3719239214490203e-05,
1663
+ "loss": 0.5464,
1664
+ "step": 276
1665
+ },
1666
+ {
1667
+ "epoch": 0.41,
1668
+ "learning_rate": 1.3676059784888112e-05,
1669
+ "loss": 0.5541,
1670
+ "step": 277
1671
+ },
1672
+ {
1673
+ "epoch": 0.41,
1674
+ "learning_rate": 1.363280096120289e-05,
1675
+ "loss": 0.5453,
1676
+ "step": 278
1677
+ },
1678
+ {
1679
+ "epoch": 0.41,
1680
+ "learning_rate": 1.358946367772148e-05,
1681
+ "loss": 0.5163,
1682
+ "step": 279
1683
+ },
1684
+ {
1685
+ "epoch": 0.41,
1686
+ "learning_rate": 1.3546048870425356e-05,
1687
+ "loss": 0.5263,
1688
+ "step": 280
1689
+ },
1690
+ {
1691
+ "epoch": 0.41,
1692
+ "learning_rate": 1.3502557476970339e-05,
1693
+ "loss": 0.5369,
1694
+ "step": 281
1695
+ },
1696
+ {
1697
+ "epoch": 0.42,
1698
+ "learning_rate": 1.3458990436666313e-05,
1699
+ "loss": 0.5603,
1700
+ "step": 282
1701
+ },
1702
+ {
1703
+ "epoch": 0.42,
1704
+ "learning_rate": 1.3415348690456955e-05,
1705
+ "loss": 0.5526,
1706
+ "step": 283
1707
+ },
1708
+ {
1709
+ "epoch": 0.42,
1710
+ "learning_rate": 1.3371633180899417e-05,
1711
+ "loss": 0.5255,
1712
+ "step": 284
1713
+ },
1714
+ {
1715
+ "epoch": 0.42,
1716
+ "learning_rate": 1.3327844852143956e-05,
1717
+ "loss": 0.5572,
1718
+ "step": 285
1719
+ },
1720
+ {
1721
+ "epoch": 0.42,
1722
+ "learning_rate": 1.3283984649913552e-05,
1723
+ "loss": 0.5599,
1724
+ "step": 286
1725
+ },
1726
+ {
1727
+ "epoch": 0.42,
1728
+ "learning_rate": 1.3240053521483483e-05,
1729
+ "loss": 0.517,
1730
+ "step": 287
1731
+ },
1732
+ {
1733
+ "epoch": 0.42,
1734
+ "learning_rate": 1.3196052415660856e-05,
1735
+ "loss": 0.5277,
1736
+ "step": 288
1737
+ },
1738
+ {
1739
+ "epoch": 0.43,
1740
+ "learning_rate": 1.3151982282764126e-05,
1741
+ "loss": 0.5506,
1742
+ "step": 289
1743
+ },
1744
+ {
1745
+ "epoch": 0.43,
1746
+ "learning_rate": 1.3107844074602566e-05,
1747
+ "loss": 0.532,
1748
+ "step": 290
1749
+ },
1750
+ {
1751
+ "epoch": 0.43,
1752
+ "learning_rate": 1.3107844074602566e-05,
1753
+ "loss": 0.5637,
1754
+ "step": 291
1755
+ },
1756
+ {
1757
+ "epoch": 0.43,
1758
+ "learning_rate": 1.3063638744455713e-05,
1759
+ "loss": 0.536,
1760
+ "step": 292
1761
+ },
1762
+ {
1763
+ "epoch": 0.43,
1764
+ "learning_rate": 1.3019367247052781e-05,
1765
+ "loss": 0.5947,
1766
+ "step": 293
1767
+ },
1768
+ {
1769
+ "epoch": 0.43,
1770
+ "learning_rate": 1.297503053855203e-05,
1771
+ "loss": 0.5287,
1772
+ "step": 294
1773
+ },
1774
+ {
1775
+ "epoch": 0.44,
1776
+ "learning_rate": 1.2930629576520133e-05,
1777
+ "loss": 0.554,
1778
+ "step": 295
1779
+ },
1780
+ {
1781
+ "epoch": 0.44,
1782
+ "learning_rate": 1.2886165319911474e-05,
1783
+ "loss": 0.562,
1784
+ "step": 296
1785
+ },
1786
+ {
1787
+ "epoch": 0.44,
1788
+ "learning_rate": 1.2841638729047463e-05,
1789
+ "loss": 0.5398,
1790
+ "step": 297
1791
+ },
1792
+ {
1793
+ "epoch": 0.44,
1794
+ "learning_rate": 1.2797050765595767e-05,
1795
+ "loss": 0.5341,
1796
+ "step": 298
1797
+ },
1798
+ {
1799
+ "epoch": 0.44,
1800
+ "learning_rate": 1.2752402392549556e-05,
1801
+ "loss": 0.5519,
1802
+ "step": 299
1803
+ },
1804
+ {
1805
+ "epoch": 0.44,
1806
+ "learning_rate": 1.2707694574206712e-05,
1807
+ "loss": 0.527,
1808
+ "step": 300
1809
+ },
1810
+ {
1811
+ "epoch": 0.44,
1812
+ "learning_rate": 1.2662928276148985e-05,
1813
+ "loss": 0.5426,
1814
+ "step": 301
1815
+ },
1816
+ {
1817
+ "epoch": 0.45,
1818
+ "learning_rate": 1.2618104465221148e-05,
1819
+ "loss": 0.5561,
1820
+ "step": 302
1821
+ },
1822
+ {
1823
+ "epoch": 0.45,
1824
+ "learning_rate": 1.2573224109510112e-05,
1825
+ "loss": 0.5305,
1826
+ "step": 303
1827
+ },
1828
+ {
1829
+ "epoch": 0.45,
1830
+ "learning_rate": 1.2528288178324029e-05,
1831
+ "loss": 0.565,
1832
+ "step": 304
1833
+ },
1834
+ {
1835
+ "epoch": 0.45,
1836
+ "learning_rate": 1.2483297642171332e-05,
1837
+ "loss": 0.5429,
1838
+ "step": 305
1839
+ },
1840
+ {
1841
+ "epoch": 0.45,
1842
+ "learning_rate": 1.2438253472739805e-05,
1843
+ "loss": 0.5725,
1844
+ "step": 306
1845
+ },
1846
+ {
1847
+ "epoch": 0.45,
1848
+ "learning_rate": 1.2393156642875579e-05,
1849
+ "loss": 0.5878,
1850
+ "step": 307
1851
+ },
1852
+ {
1853
+ "epoch": 0.45,
1854
+ "learning_rate": 1.234800812656212e-05,
1855
+ "loss": 0.5376,
1856
+ "step": 308
1857
+ },
1858
+ {
1859
+ "epoch": 0.46,
1860
+ "learning_rate": 1.23028088988992e-05,
1861
+ "loss": 0.5502,
1862
+ "step": 309
1863
+ },
1864
+ {
1865
+ "epoch": 0.46,
1866
+ "learning_rate": 1.2257559936081833e-05,
1867
+ "loss": 0.5396,
1868
+ "step": 310
1869
+ },
1870
+ {
1871
+ "epoch": 0.46,
1872
+ "learning_rate": 1.2212262215379199e-05,
1873
+ "loss": 0.5494,
1874
+ "step": 311
1875
+ },
1876
+ {
1877
+ "epoch": 0.46,
1878
+ "learning_rate": 1.2166916715113521e-05,
1879
+ "loss": 0.5773,
1880
+ "step": 312
1881
+ },
1882
+ {
1883
+ "epoch": 0.46,
1884
+ "learning_rate": 1.2121524414638958e-05,
1885
+ "loss": 0.5631,
1886
+ "step": 313
1887
+ },
1888
+ {
1889
+ "epoch": 0.46,
1890
+ "learning_rate": 1.207608629432043e-05,
1891
+ "loss": 0.5486,
1892
+ "step": 314
1893
+ },
1894
+ {
1895
+ "epoch": 0.46,
1896
+ "learning_rate": 1.2030603335512467e-05,
1897
+ "loss": 0.5547,
1898
+ "step": 315
1899
+ },
1900
+ {
1901
+ "epoch": 0.47,
1902
+ "learning_rate": 1.1985076520537995e-05,
1903
+ "loss": 0.5226,
1904
+ "step": 316
1905
+ },
1906
+ {
1907
+ "epoch": 0.47,
1908
+ "learning_rate": 1.1939506832667129e-05,
1909
+ "loss": 0.5549,
1910
+ "step": 317
1911
+ },
1912
+ {
1913
+ "epoch": 0.47,
1914
+ "learning_rate": 1.1893895256095937e-05,
1915
+ "loss": 0.5555,
1916
+ "step": 318
1917
+ },
1918
+ {
1919
+ "epoch": 0.47,
1920
+ "learning_rate": 1.1848242775925188e-05,
1921
+ "loss": 0.5226,
1922
+ "step": 319
1923
+ },
1924
+ {
1925
+ "epoch": 0.47,
1926
+ "learning_rate": 1.180255037813906e-05,
1927
+ "loss": 0.5165,
1928
+ "step": 320
1929
+ },
1930
+ {
1931
+ "epoch": 0.47,
1932
+ "learning_rate": 1.1756819049583861e-05,
1933
+ "loss": 0.529,
1934
+ "step": 321
1935
+ },
1936
+ {
1937
+ "epoch": 0.47,
1938
+ "learning_rate": 1.1711049777946717e-05,
1939
+ "loss": 0.5699,
1940
+ "step": 322
1941
+ },
1942
+ {
1943
+ "epoch": 0.48,
1944
+ "learning_rate": 1.166524355173422e-05,
1945
+ "loss": 0.5567,
1946
+ "step": 323
1947
+ },
1948
+ {
1949
+ "epoch": 0.48,
1950
+ "learning_rate": 1.1619401360251104e-05,
1951
+ "loss": 0.5473,
1952
+ "step": 324
1953
+ },
1954
+ {
1955
+ "epoch": 0.48,
1956
+ "learning_rate": 1.1573524193578863e-05,
1957
+ "loss": 0.5565,
1958
+ "step": 325
1959
+ },
1960
+ {
1961
+ "epoch": 0.48,
1962
+ "learning_rate": 1.1527613042554368e-05,
1963
+ "loss": 0.5408,
1964
+ "step": 326
1965
+ },
1966
+ {
1967
+ "epoch": 0.48,
1968
+ "learning_rate": 1.1481668898748474e-05,
1969
+ "loss": 0.5403,
1970
+ "step": 327
1971
+ },
1972
+ {
1973
+ "epoch": 0.48,
1974
+ "learning_rate": 1.1435692754444604e-05,
1975
+ "loss": 0.5377,
1976
+ "step": 328
1977
+ },
1978
+ {
1979
+ "epoch": 0.49,
1980
+ "learning_rate": 1.1389685602617302e-05,
1981
+ "loss": 0.5327,
1982
+ "step": 329
1983
+ },
1984
+ {
1985
+ "epoch": 0.49,
1986
+ "learning_rate": 1.134364843691082e-05,
1987
+ "loss": 0.5259,
1988
+ "step": 330
1989
+ },
1990
+ {
1991
+ "epoch": 0.49,
1992
+ "learning_rate": 1.1297582251617618e-05,
1993
+ "loss": 0.5424,
1994
+ "step": 331
1995
+ },
1996
+ {
1997
+ "epoch": 0.49,
1998
+ "learning_rate": 1.1251488041656929e-05,
1999
+ "loss": 0.5182,
2000
+ "step": 332
2001
+ },
2002
+ {
2003
+ "epoch": 0.49,
2004
+ "learning_rate": 1.1205366802553231e-05,
2005
+ "loss": 0.5209,
2006
+ "step": 333
2007
+ },
2008
+ {
2009
+ "epoch": 0.49,
2010
+ "learning_rate": 1.1159219530414786e-05,
2011
+ "loss": 0.5292,
2012
+ "step": 334
2013
+ },
2014
+ {
2015
+ "epoch": 0.49,
2016
+ "learning_rate": 1.1113047221912097e-05,
2017
+ "loss": 0.5792,
2018
+ "step": 335
2019
+ },
2020
+ {
2021
+ "epoch": 0.5,
2022
+ "learning_rate": 1.1066850874256387e-05,
2023
+ "loss": 0.5524,
2024
+ "step": 336
2025
+ },
2026
+ {
2027
+ "epoch": 0.5,
2028
+ "learning_rate": 1.1020631485178084e-05,
2029
+ "loss": 0.5481,
2030
+ "step": 337
2031
+ },
2032
+ {
2033
+ "epoch": 0.5,
2034
+ "learning_rate": 1.0974390052905238e-05,
2035
+ "loss": 0.5496,
2036
+ "step": 338
2037
+ },
2038
+ {
2039
+ "epoch": 0.5,
2040
+ "learning_rate": 1.0928127576141992e-05,
2041
+ "loss": 0.5446,
2042
+ "step": 339
2043
+ },
2044
+ {
2045
+ "epoch": 0.5,
2046
+ "learning_rate": 1.0881845054046988e-05,
2047
+ "loss": 0.5433,
2048
+ "step": 340
2049
+ },
2050
+ {
2051
+ "epoch": 0.5,
2052
+ "learning_rate": 1.0835543486211815e-05,
2053
+ "loss": 0.5208,
2054
+ "step": 341
2055
+ },
2056
+ {
2057
+ "epoch": 0.5,
2058
+ "learning_rate": 1.0789223872639385e-05,
2059
+ "loss": 0.5707,
2060
+ "step": 342
2061
+ },
2062
+ {
2063
+ "epoch": 0.51,
2064
+ "learning_rate": 1.0742887213722372e-05,
2065
+ "loss": 0.5387,
2066
+ "step": 343
2067
+ },
2068
+ {
2069
+ "epoch": 0.51,
2070
+ "learning_rate": 1.0696534510221575e-05,
2071
+ "loss": 0.5474,
2072
+ "step": 344
2073
+ },
2074
+ {
2075
+ "epoch": 0.51,
2076
+ "learning_rate": 1.065016676324433e-05,
2077
+ "loss": 0.5303,
2078
+ "step": 345
2079
+ },
2080
+ {
2081
+ "epoch": 0.51,
2082
+ "learning_rate": 1.0603784974222862e-05,
2083
+ "loss": 0.546,
2084
+ "step": 346
2085
+ },
2086
+ {
2087
+ "epoch": 0.51,
2088
+ "learning_rate": 1.0557390144892684e-05,
2089
+ "loss": 0.5021,
2090
+ "step": 347
2091
+ },
2092
+ {
2093
+ "epoch": 0.51,
2094
+ "learning_rate": 1.0510983277270945e-05,
2095
+ "loss": 0.5499,
2096
+ "step": 348
2097
+ },
2098
+ {
2099
+ "epoch": 0.51,
2100
+ "learning_rate": 1.0464565373634784e-05,
2101
+ "loss": 0.5445,
2102
+ "step": 349
2103
+ },
2104
+ {
2105
+ "epoch": 0.52,
2106
+ "learning_rate": 1.0418137436499699e-05,
2107
+ "loss": 0.5578,
2108
+ "step": 350
2109
+ },
2110
+ {
2111
+ "epoch": 0.52,
2112
+ "learning_rate": 1.0371700468597886e-05,
2113
+ "loss": 0.5312,
2114
+ "step": 351
2115
+ },
2116
+ {
2117
+ "epoch": 0.52,
2118
+ "learning_rate": 1.0325255472856586e-05,
2119
+ "loss": 0.56,
2120
+ "step": 352
2121
+ },
2122
+ {
2123
+ "epoch": 0.52,
2124
+ "learning_rate": 1.0278803452376416e-05,
2125
+ "loss": 0.501,
2126
+ "step": 353
2127
+ },
2128
+ {
2129
+ "epoch": 0.52,
2130
+ "learning_rate": 1.0232345410409718e-05,
2131
+ "loss": 0.5123,
2132
+ "step": 354
2133
+ },
2134
+ {
2135
+ "epoch": 0.52,
2136
+ "learning_rate": 1.018588235033888e-05,
2137
+ "loss": 0.5272,
2138
+ "step": 355
2139
+ },
2140
+ {
2141
+ "epoch": 0.53,
2142
+ "learning_rate": 1.0139415275654671e-05,
2143
+ "loss": 0.5484,
2144
+ "step": 356
2145
+ },
2146
+ {
2147
+ "epoch": 0.53,
2148
+ "learning_rate": 1.0092945189934558e-05,
2149
+ "loss": 0.5149,
2150
+ "step": 357
2151
+ },
2152
+ {
2153
+ "epoch": 0.53,
2154
+ "learning_rate": 1.0046473096821047e-05,
2155
+ "loss": 0.5443,
2156
+ "step": 358
2157
+ },
2158
+ {
2159
+ "epoch": 0.53,
2160
+ "learning_rate": 1e-05,
2161
+ "loss": 0.5473,
2162
+ "step": 359
2163
+ },
2164
+ {
2165
+ "epoch": 0.53,
2166
+ "learning_rate": 9.953526903178956e-06,
2167
+ "loss": 0.5825,
2168
+ "step": 360
2169
+ },
2170
+ {
2171
+ "epoch": 0.53,
2172
+ "learning_rate": 9.907054810065446e-06,
2173
+ "loss": 0.5895,
2174
+ "step": 361
2175
+ },
2176
+ {
2177
+ "epoch": 0.53,
2178
+ "learning_rate": 9.860584724345334e-06,
2179
+ "loss": 0.54,
2180
+ "step": 362
2181
+ },
2182
+ {
2183
+ "epoch": 0.54,
2184
+ "learning_rate": 9.81411764966112e-06,
2185
+ "loss": 0.5421,
2186
+ "step": 363
2187
+ },
2188
+ {
2189
+ "epoch": 0.54,
2190
+ "learning_rate": 9.767654589590284e-06,
2191
+ "loss": 0.5609,
2192
+ "step": 364
2193
+ },
2194
+ {
2195
+ "epoch": 0.54,
2196
+ "learning_rate": 9.721196547623585e-06,
2197
+ "loss": 0.5303,
2198
+ "step": 365
2199
+ },
2200
+ {
2201
+ "epoch": 0.54,
2202
+ "learning_rate": 9.674744527143419e-06,
2203
+ "loss": 0.5431,
2204
+ "step": 366
2205
+ },
2206
+ {
2207
+ "epoch": 0.54,
2208
+ "learning_rate": 9.628299531402118e-06,
2209
+ "loss": 0.5301,
2210
+ "step": 367
2211
+ },
2212
+ {
2213
+ "epoch": 0.54,
2214
+ "learning_rate": 9.581862563500305e-06,
2215
+ "loss": 0.5379,
2216
+ "step": 368
2217
+ },
2218
+ {
2219
+ "epoch": 0.54,
2220
+ "learning_rate": 9.535434626365221e-06,
2221
+ "loss": 0.5389,
2222
+ "step": 369
2223
+ },
2224
+ {
2225
+ "epoch": 0.55,
2226
+ "learning_rate": 9.489016722729059e-06,
2227
+ "loss": 0.5143,
2228
+ "step": 370
2229
+ },
2230
+ {
2231
+ "epoch": 0.55,
2232
+ "learning_rate": 9.442609855107317e-06,
2233
+ "loss": 0.5171,
2234
+ "step": 371
2235
+ },
2236
+ {
2237
+ "epoch": 0.55,
2238
+ "learning_rate": 9.39621502577714e-06,
2239
+ "loss": 0.5292,
2240
+ "step": 372
2241
+ },
2242
+ {
2243
+ "epoch": 0.55,
2244
+ "learning_rate": 9.349833236755675e-06,
2245
+ "loss": 0.548,
2246
+ "step": 373
2247
+ },
2248
+ {
2249
+ "epoch": 0.55,
2250
+ "learning_rate": 9.30346548977843e-06,
2251
+ "loss": 0.5394,
2252
+ "step": 374
2253
+ },
2254
+ {
2255
+ "epoch": 0.55,
2256
+ "learning_rate": 9.257112786277631e-06,
2257
+ "loss": 0.4985,
2258
+ "step": 375
2259
+ },
2260
+ {
2261
+ "epoch": 0.55,
2262
+ "learning_rate": 9.21077612736062e-06,
2263
+ "loss": 0.5576,
2264
+ "step": 376
2265
+ },
2266
+ {
2267
+ "epoch": 0.56,
2268
+ "learning_rate": 9.164456513788186e-06,
2269
+ "loss": 0.5745,
2270
+ "step": 377
2271
+ },
2272
+ {
2273
+ "epoch": 0.56,
2274
+ "learning_rate": 9.118154945953015e-06,
2275
+ "loss": 0.5394,
2276
+ "step": 378
2277
+ },
2278
+ {
2279
+ "epoch": 0.56,
2280
+ "learning_rate": 9.07187242385801e-06,
2281
+ "loss": 0.5688,
2282
+ "step": 379
2283
+ },
2284
+ {
2285
+ "epoch": 0.56,
2286
+ "learning_rate": 9.025609947094765e-06,
2287
+ "loss": 0.5443,
2288
+ "step": 380
2289
+ },
2290
+ {
2291
+ "epoch": 0.56,
2292
+ "learning_rate": 8.979368514821917e-06,
2293
+ "loss": 0.4974,
2294
+ "step": 381
2295
+ },
2296
+ {
2297
+ "epoch": 0.56,
2298
+ "learning_rate": 8.933149125743615e-06,
2299
+ "loss": 0.5325,
2300
+ "step": 382
2301
+ },
2302
+ {
2303
+ "epoch": 0.56,
2304
+ "learning_rate": 8.88695277808791e-06,
2305
+ "loss": 0.544,
2306
+ "step": 383
2307
+ },
2308
+ {
2309
+ "epoch": 0.57,
2310
+ "learning_rate": 8.840780469585215e-06,
2311
+ "loss": 0.5299,
2312
+ "step": 384
2313
+ },
2314
+ {
2315
+ "epoch": 0.57,
2316
+ "learning_rate": 8.79463319744677e-06,
2317
+ "loss": 0.522,
2318
+ "step": 385
2319
+ },
2320
+ {
2321
+ "epoch": 0.57,
2322
+ "learning_rate": 8.748511958343076e-06,
2323
+ "loss": 0.5446,
2324
+ "step": 386
2325
+ },
2326
+ {
2327
+ "epoch": 0.57,
2328
+ "learning_rate": 8.702417748382384e-06,
2329
+ "loss": 0.5351,
2330
+ "step": 387
2331
+ },
2332
+ {
2333
+ "epoch": 0.57,
2334
+ "learning_rate": 8.656351563089185e-06,
2335
+ "loss": 0.5184,
2336
+ "step": 388
2337
+ },
2338
+ {
2339
+ "epoch": 0.57,
2340
+ "learning_rate": 8.610314397382701e-06,
2341
+ "loss": 0.4872,
2342
+ "step": 389
2343
+ },
2344
+ {
2345
+ "epoch": 0.58,
2346
+ "learning_rate": 8.564307245555403e-06,
2347
+ "loss": 0.535,
2348
+ "step": 390
2349
+ },
2350
+ {
2351
+ "epoch": 0.58,
2352
+ "learning_rate": 8.51833110125153e-06,
2353
+ "loss": 0.5197,
2354
+ "step": 391
2355
+ },
2356
+ {
2357
+ "epoch": 0.58,
2358
+ "learning_rate": 8.472386957445635e-06,
2359
+ "loss": 0.5015,
2360
+ "step": 392
2361
+ },
2362
+ {
2363
+ "epoch": 0.58,
2364
+ "learning_rate": 8.426475806421139e-06,
2365
+ "loss": 0.5493,
2366
+ "step": 393
2367
+ },
2368
+ {
2369
+ "epoch": 0.58,
2370
+ "learning_rate": 8.380598639748898e-06,
2371
+ "loss": 0.565,
2372
+ "step": 394
2373
+ },
2374
+ {
2375
+ "epoch": 0.58,
2376
+ "learning_rate": 8.334756448265782e-06,
2377
+ "loss": 0.4995,
2378
+ "step": 395
2379
+ },
2380
+ {
2381
+ "epoch": 0.58,
2382
+ "learning_rate": 8.288950222053287e-06,
2383
+ "loss": 0.5379,
2384
+ "step": 396
2385
+ },
2386
+ {
2387
+ "epoch": 0.59,
2388
+ "learning_rate": 8.243180950416142e-06,
2389
+ "loss": 0.5056,
2390
+ "step": 397
2391
+ },
2392
+ {
2393
+ "epoch": 0.59,
2394
+ "learning_rate": 8.243180950416142e-06,
2395
+ "loss": 0.5248,
2396
+ "step": 398
2397
+ },
2398
+ {
2399
+ "epoch": 0.59,
2400
+ "learning_rate": 8.197449621860944e-06,
2401
+ "loss": 0.5495,
2402
+ "step": 399
2403
+ },
2404
+ {
2405
+ "epoch": 0.59,
2406
+ "learning_rate": 8.151757224074815e-06,
2407
+ "loss": 0.5626,
2408
+ "step": 400
2409
+ },
2410
+ {
2411
+ "epoch": 0.59,
2412
+ "learning_rate": 8.106104743904065e-06,
2413
+ "loss": 0.5502,
2414
+ "step": 401
2415
+ },
2416
+ {
2417
+ "epoch": 0.59,
2418
+ "learning_rate": 8.060493167332874e-06,
2419
+ "loss": 0.5708,
2420
+ "step": 402
2421
+ },
2422
+ {
2423
+ "epoch": 0.59,
2424
+ "learning_rate": 8.014923479462007e-06,
2425
+ "loss": 0.5454,
2426
+ "step": 403
2427
+ },
2428
+ {
2429
+ "epoch": 0.6,
2430
+ "learning_rate": 7.969396664487534e-06,
2431
+ "loss": 0.4988,
2432
+ "step": 404
2433
+ },
2434
+ {
2435
+ "epoch": 0.6,
2436
+ "learning_rate": 7.923913705679573e-06,
2437
+ "loss": 0.5065,
2438
+ "step": 405
2439
+ },
2440
+ {
2441
+ "epoch": 0.6,
2442
+ "learning_rate": 7.878475585361045e-06,
2443
+ "loss": 0.5241,
2444
+ "step": 406
2445
+ },
2446
+ {
2447
+ "epoch": 0.6,
2448
+ "learning_rate": 7.833083284886484e-06,
2449
+ "loss": 0.5259,
2450
+ "step": 407
2451
+ },
2452
+ {
2453
+ "epoch": 0.6,
2454
+ "learning_rate": 7.787737784620803e-06,
2455
+ "loss": 0.5474,
2456
+ "step": 408
2457
+ },
2458
+ {
2459
+ "epoch": 0.6,
2460
+ "learning_rate": 7.74244006391817e-06,
2461
+ "loss": 0.5107,
2462
+ "step": 409
2463
+ },
2464
+ {
2465
+ "epoch": 0.6,
2466
+ "learning_rate": 7.697191101100802e-06,
2467
+ "loss": 0.5166,
2468
+ "step": 410
2469
+ },
2470
+ {
2471
+ "epoch": 0.61,
2472
+ "learning_rate": 7.651991873437884e-06,
2473
+ "loss": 0.5427,
2474
+ "step": 411
2475
+ },
2476
+ {
2477
+ "epoch": 0.61,
2478
+ "learning_rate": 7.606843357124426e-06,
2479
+ "loss": 0.5187,
2480
+ "step": 412
2481
+ },
2482
+ {
2483
+ "epoch": 0.61,
2484
+ "learning_rate": 7.561746527260197e-06,
2485
+ "loss": 0.5332,
2486
+ "step": 413
2487
+ },
2488
+ {
2489
+ "epoch": 0.61,
2490
+ "learning_rate": 7.516702357828672e-06,
2491
+ "loss": 0.493,
2492
+ "step": 414
2493
+ },
2494
+ {
2495
+ "epoch": 0.61,
2496
+ "learning_rate": 7.471711821675973e-06,
2497
+ "loss": 0.5354,
2498
+ "step": 415
2499
+ },
2500
+ {
2501
+ "epoch": 0.61,
2502
+ "learning_rate": 7.42677589048989e-06,
2503
+ "loss": 0.544,
2504
+ "step": 416
2505
+ },
2506
+ {
2507
+ "epoch": 0.62,
2508
+ "learning_rate": 7.381895534778852e-06,
2509
+ "loss": 0.5487,
2510
+ "step": 417
2511
+ },
2512
+ {
2513
+ "epoch": 0.62,
2514
+ "learning_rate": 7.337071723851018e-06,
2515
+ "loss": 0.5368,
2516
+ "step": 418
2517
+ },
2518
+ {
2519
+ "epoch": 0.62,
2520
+ "learning_rate": 7.292305425793291e-06,
2521
+ "loss": 0.5248,
2522
+ "step": 419
2523
+ },
2524
+ {
2525
+ "epoch": 0.62,
2526
+ "learning_rate": 7.247597607450446e-06,
2527
+ "loss": 0.5321,
2528
+ "step": 420
2529
+ },
2530
+ {
2531
+ "epoch": 0.62,
2532
+ "learning_rate": 7.2029492344042395e-06,
2533
+ "loss": 0.5125,
2534
+ "step": 421
2535
+ },
2536
+ {
2537
+ "epoch": 0.62,
2538
+ "learning_rate": 7.1583612709525405e-06,
2539
+ "loss": 0.535,
2540
+ "step": 422
2541
+ },
2542
+ {
2543
+ "epoch": 0.62,
2544
+ "learning_rate": 7.113834680088527e-06,
2545
+ "loss": 0.537,
2546
+ "step": 423
2547
+ },
2548
+ {
2549
+ "epoch": 0.63,
2550
+ "learning_rate": 7.06937042347987e-06,
2551
+ "loss": 0.5298,
2552
+ "step": 424
2553
+ },
2554
+ {
2555
+ "epoch": 0.63,
2556
+ "learning_rate": 7.024969461447973e-06,
2557
+ "loss": 0.5386,
2558
+ "step": 425
2559
+ },
2560
+ {
2561
+ "epoch": 0.63,
2562
+ "learning_rate": 6.980632752947221e-06,
2563
+ "loss": 0.5347,
2564
+ "step": 426
2565
+ },
2566
+ {
2567
+ "epoch": 0.63,
2568
+ "learning_rate": 6.936361255544288e-06,
2569
+ "loss": 0.5235,
2570
+ "step": 427
2571
+ },
2572
+ {
2573
+ "epoch": 0.63,
2574
+ "learning_rate": 6.892155925397437e-06,
2575
+ "loss": 0.4912,
2576
+ "step": 428
2577
+ },
2578
+ {
2579
+ "epoch": 0.63,
2580
+ "learning_rate": 6.848017717235878e-06,
2581
+ "loss": 0.5415,
2582
+ "step": 429
2583
+ },
2584
+ {
2585
+ "epoch": 0.63,
2586
+ "learning_rate": 6.803947584339148e-06,
2587
+ "loss": 0.5037,
2588
+ "step": 430
2589
+ },
2590
+ {
2591
+ "epoch": 0.64,
2592
+ "learning_rate": 6.7599464785165195e-06,
2593
+ "loss": 0.5229,
2594
+ "step": 431
2595
+ },
2596
+ {
2597
+ "epoch": 0.64,
2598
+ "learning_rate": 6.716015350086449e-06,
2599
+ "loss": 0.5535,
2600
+ "step": 432
2601
+ },
2602
+ {
2603
+ "epoch": 0.64,
2604
+ "learning_rate": 6.672155147856046e-06,
2605
+ "loss": 0.487,
2606
+ "step": 433
2607
+ },
2608
+ {
2609
+ "epoch": 0.64,
2610
+ "learning_rate": 6.628366819100586e-06,
2611
+ "loss": 0.5187,
2612
+ "step": 434
2613
+ },
2614
+ {
2615
+ "epoch": 0.64,
2616
+ "learning_rate": 6.584651309543049e-06,
2617
+ "loss": 0.5232,
2618
+ "step": 435
2619
+ },
2620
+ {
2621
+ "epoch": 0.64,
2622
+ "learning_rate": 6.54100956333369e-06,
2623
+ "loss": 0.5217,
2624
+ "step": 436
2625
+ },
2626
+ {
2627
+ "epoch": 0.64,
2628
+ "learning_rate": 6.497442523029663e-06,
2629
+ "loss": 0.5125,
2630
+ "step": 437
2631
+ },
2632
+ {
2633
+ "epoch": 0.65,
2634
+ "learning_rate": 6.453951129574644e-06,
2635
+ "loss": 0.5418,
2636
+ "step": 438
2637
+ },
2638
+ {
2639
+ "epoch": 0.65,
2640
+ "learning_rate": 6.410536322278523e-06,
2641
+ "loss": 0.5503,
2642
+ "step": 439
2643
+ },
2644
+ {
2645
+ "epoch": 0.65,
2646
+ "learning_rate": 6.3671990387971096e-06,
2647
+ "loss": 0.5442,
2648
+ "step": 440
2649
+ },
2650
+ {
2651
+ "epoch": 0.65,
2652
+ "learning_rate": 6.32394021511189e-06,
2653
+ "loss": 0.5457,
2654
+ "step": 441
2655
+ },
2656
+ {
2657
+ "epoch": 0.65,
2658
+ "learning_rate": 6.280760785509802e-06,
2659
+ "loss": 0.5364,
2660
+ "step": 442
2661
+ },
2662
+ {
2663
+ "epoch": 0.65,
2664
+ "learning_rate": 6.237661682563055e-06,
2665
+ "loss": 0.5616,
2666
+ "step": 443
2667
+ },
2668
+ {
2669
+ "epoch": 0.65,
2670
+ "learning_rate": 6.194643837109015e-06,
2671
+ "loss": 0.5177,
2672
+ "step": 444
2673
+ },
2674
+ {
2675
+ "epoch": 0.66,
2676
+ "learning_rate": 6.151708178230057e-06,
2677
+ "loss": 0.5068,
2678
+ "step": 445
2679
+ },
2680
+ {
2681
+ "epoch": 0.66,
2682
+ "learning_rate": 6.108855633233546e-06,
2683
+ "loss": 0.4901,
2684
+ "step": 446
2685
+ },
2686
+ {
2687
+ "epoch": 0.66,
2688
+ "learning_rate": 6.066087127631761e-06,
2689
+ "loss": 0.4956,
2690
+ "step": 447
2691
+ },
2692
+ {
2693
+ "epoch": 0.66,
2694
+ "learning_rate": 6.0234035851219604e-06,
2695
+ "loss": 0.5101,
2696
+ "step": 448
2697
+ },
2698
+ {
2699
+ "epoch": 0.66,
2700
+ "learning_rate": 6.0234035851219604e-06,
2701
+ "loss": 0.5244,
2702
+ "step": 449
2703
+ },
2704
+ {
2705
+ "epoch": 0.66,
2706
+ "learning_rate": 5.9808059275663775e-06,
2707
+ "loss": 0.4935,
2708
+ "step": 450
2709
+ },
2710
+ {
2711
+ "epoch": 0.67,
2712
+ "learning_rate": 5.93829507497235e-06,
2713
+ "loss": 0.544,
2714
+ "step": 451
2715
+ },
2716
+ {
2717
+ "epoch": 0.67,
2718
+ "learning_rate": 5.895871945472434e-06,
2719
+ "loss": 0.5254,
2720
+ "step": 452
2721
+ },
2722
+ {
2723
+ "epoch": 0.67,
2724
+ "learning_rate": 5.853537455304575e-06,
2725
+ "loss": 0.551,
2726
+ "step": 453
2727
+ },
2728
+ {
2729
+ "epoch": 0.67,
2730
+ "learning_rate": 5.811292518792324e-06,
2731
+ "loss": 0.5516,
2732
+ "step": 454
2733
+ },
2734
+ {
2735
+ "epoch": 0.67,
2736
+ "learning_rate": 5.769138048325087e-06,
2737
+ "loss": 0.4987,
2738
+ "step": 455
2739
+ },
2740
+ {
2741
+ "epoch": 0.67,
2742
+ "learning_rate": 5.72707495433842e-06,
2743
+ "loss": 0.5088,
2744
+ "step": 456
2745
+ },
2746
+ {
2747
+ "epoch": 0.67,
2748
+ "learning_rate": 5.685104145294364e-06,
2749
+ "loss": 0.5168,
2750
+ "step": 457
2751
+ },
2752
+ {
2753
+ "epoch": 0.68,
2754
+ "learning_rate": 5.643226527661825e-06,
2755
+ "loss": 0.5045,
2756
+ "step": 458
2757
+ },
2758
+ {
2759
+ "epoch": 0.68,
2760
+ "learning_rate": 5.601443005897012e-06,
2761
+ "loss": 0.5314,
2762
+ "step": 459
2763
+ },
2764
+ {
2765
+ "epoch": 0.68,
2766
+ "learning_rate": 5.55975448242386e-06,
2767
+ "loss": 0.4984,
2768
+ "step": 460
2769
+ },
2770
+ {
2771
+ "epoch": 0.68,
2772
+ "learning_rate": 5.5181618576146e-06,
2773
+ "loss": 0.5256,
2774
+ "step": 461
2775
+ },
2776
+ {
2777
+ "epoch": 0.68,
2778
+ "learning_rate": 5.476666029770259e-06,
2779
+ "loss": 0.529,
2780
+ "step": 462
2781
+ },
2782
+ {
2783
+ "epoch": 0.68,
2784
+ "learning_rate": 5.435267895101303e-06,
2785
+ "loss": 0.4984,
2786
+ "step": 463
2787
+ },
2788
+ {
2789
+ "epoch": 0.68,
2790
+ "learning_rate": 5.393968347708233e-06,
2791
+ "loss": 0.5337,
2792
+ "step": 464
2793
+ },
2794
+ {
2795
+ "epoch": 0.69,
2796
+ "learning_rate": 5.352768279562315e-06,
2797
+ "loss": 0.5347,
2798
+ "step": 465
2799
+ },
2800
+ {
2801
+ "epoch": 0.69,
2802
+ "learning_rate": 5.352768279562315e-06,
2803
+ "loss": 0.513,
2804
+ "step": 466
2805
+ },
2806
+ {
2807
+ "epoch": 0.69,
2808
+ "learning_rate": 5.311668580486311e-06,
2809
+ "loss": 0.5144,
2810
+ "step": 467
2811
+ },
2812
+ {
2813
+ "epoch": 0.69,
2814
+ "learning_rate": 5.270670138135234e-06,
2815
+ "loss": 0.5493,
2816
+ "step": 468
2817
+ },
2818
+ {
2819
+ "epoch": 0.69,
2820
+ "learning_rate": 5.229773837977208e-06,
2821
+ "loss": 0.513,
2822
+ "step": 469
2823
+ },
2824
+ {
2825
+ "epoch": 0.69,
2826
+ "learning_rate": 5.188980563274315e-06,
2827
+ "loss": 0.5349,
2828
+ "step": 470
2829
+ },
2830
+ {
2831
+ "epoch": 0.69,
2832
+ "learning_rate": 5.148291195063555e-06,
2833
+ "loss": 0.5332,
2834
+ "step": 471
2835
+ },
2836
+ {
2837
+ "epoch": 0.7,
2838
+ "learning_rate": 5.107706612137776e-06,
2839
+ "loss": 0.519,
2840
+ "step": 472
2841
+ },
2842
+ {
2843
+ "epoch": 0.7,
2844
+ "learning_rate": 5.067227691026737e-06,
2845
+ "loss": 0.5071,
2846
+ "step": 473
2847
+ },
2848
+ {
2849
+ "epoch": 0.7,
2850
+ "learning_rate": 5.026855305978129e-06,
2851
+ "loss": 0.5515,
2852
+ "step": 474
2853
+ },
2854
+ {
2855
+ "epoch": 0.7,
2856
+ "learning_rate": 4.986590328938734e-06,
2857
+ "loss": 0.4935,
2858
+ "step": 475
2859
+ },
2860
+ {
2861
+ "epoch": 0.7,
2862
+ "learning_rate": 4.946433629535585e-06,
2863
+ "loss": 0.5037,
2864
+ "step": 476
2865
+ },
2866
+ {
2867
+ "epoch": 0.7,
2868
+ "learning_rate": 4.906386075057164e-06,
2869
+ "loss": 0.5446,
2870
+ "step": 477
2871
+ },
2872
+ {
2873
+ "epoch": 0.71,
2874
+ "learning_rate": 4.866448530434692e-06,
2875
+ "loss": 0.5124,
2876
+ "step": 478
2877
+ },
2878
+ {
2879
+ "epoch": 0.71,
2880
+ "learning_rate": 4.826621858223431e-06,
2881
+ "loss": 0.5134,
2882
+ "step": 479
2883
+ },
2884
+ {
2885
+ "epoch": 0.71,
2886
+ "learning_rate": 4.786906918584083e-06,
2887
+ "loss": 0.5448,
2888
+ "step": 480
2889
+ },
2890
+ {
2891
+ "epoch": 0.71,
2892
+ "learning_rate": 4.747304569264179e-06,
2893
+ "loss": 0.5001,
2894
+ "step": 481
2895
+ },
2896
+ {
2897
+ "epoch": 0.71,
2898
+ "learning_rate": 4.707815665579569e-06,
2899
+ "loss": 0.5464,
2900
+ "step": 482
2901
+ },
2902
+ {
2903
+ "epoch": 0.71,
2904
+ "learning_rate": 4.668441060395958e-06,
2905
+ "loss": 0.5254,
2906
+ "step": 483
2907
+ },
2908
+ {
2909
+ "epoch": 0.71,
2910
+ "learning_rate": 4.629181604110464e-06,
2911
+ "loss": 0.5247,
2912
+ "step": 484
2913
+ },
2914
+ {
2915
+ "epoch": 0.72,
2916
+ "learning_rate": 4.5900381446332854e-06,
2917
+ "loss": 0.5378,
2918
+ "step": 485
2919
+ },
2920
+ {
2921
+ "epoch": 0.72,
2922
+ "learning_rate": 4.551011527369348e-06,
2923
+ "loss": 0.4988,
2924
+ "step": 486
2925
+ },
2926
+ {
2927
+ "epoch": 0.72,
2928
+ "learning_rate": 4.512102595200073e-06,
2929
+ "loss": 0.5605,
2930
+ "step": 487
2931
+ },
2932
+ {
2933
+ "epoch": 0.72,
2934
+ "learning_rate": 4.4733121884651665e-06,
2935
+ "loss": 0.5165,
2936
+ "step": 488
2937
+ },
2938
+ {
2939
+ "epoch": 0.72,
2940
+ "learning_rate": 4.434641144944464e-06,
2941
+ "loss": 0.5223,
2942
+ "step": 489
2943
+ },
2944
+ {
2945
+ "epoch": 0.72,
2946
+ "learning_rate": 4.3960902998398524e-06,
2947
+ "loss": 0.5199,
2948
+ "step": 490
2949
+ },
2950
+ {
2951
+ "epoch": 0.72,
2952
+ "learning_rate": 4.357660485757211e-06,
2953
+ "loss": 0.5419,
2954
+ "step": 491
2955
+ },
2956
+ {
2957
+ "epoch": 0.73,
2958
+ "learning_rate": 4.319352532688444e-06,
2959
+ "loss": 0.5601,
2960
+ "step": 492
2961
+ },
2962
+ {
2963
+ "epoch": 0.73,
2964
+ "learning_rate": 4.281167267993541e-06,
2965
+ "loss": 0.5347,
2966
+ "step": 493
2967
+ },
2968
+ {
2969
+ "epoch": 0.73,
2970
+ "learning_rate": 4.243105516382732e-06,
2971
+ "loss": 0.5401,
2972
+ "step": 494
2973
+ },
2974
+ {
2975
+ "epoch": 0.73,
2976
+ "learning_rate": 4.205168099898652e-06,
2977
+ "loss": 0.5231,
2978
+ "step": 495
2979
+ },
2980
+ {
2981
+ "epoch": 0.73,
2982
+ "learning_rate": 4.167355837898585e-06,
2983
+ "loss": 0.5185,
2984
+ "step": 496
2985
+ },
2986
+ {
2987
+ "epoch": 0.73,
2988
+ "learning_rate": 4.129669547036798e-06,
2989
+ "loss": 0.5064,
2990
+ "step": 497
2991
+ },
2992
+ {
2993
+ "epoch": 0.73,
2994
+ "learning_rate": 4.092110041246865e-06,
2995
+ "loss": 0.5138,
2996
+ "step": 498
2997
+ },
2998
+ {
2999
+ "epoch": 0.74,
3000
+ "learning_rate": 4.054678131724128e-06,
3001
+ "loss": 0.5255,
3002
+ "step": 499
3003
+ },
3004
+ {
3005
+ "epoch": 0.74,
3006
+ "learning_rate": 4.017374626908125e-06,
3007
+ "loss": 0.5259,
3008
+ "step": 500
3009
+ },
3010
+ {
3011
+ "epoch": 0.74,
3012
+ "learning_rate": 3.980200332465189e-06,
3013
+ "loss": 0.5563,
3014
+ "step": 501
3015
+ },
3016
+ {
3017
+ "epoch": 0.74,
3018
+ "learning_rate": 3.943156051271003e-06,
3019
+ "loss": 0.495,
3020
+ "step": 502
3021
+ },
3022
+ {
3023
+ "epoch": 0.74,
3024
+ "learning_rate": 3.906242583393279e-06,
3025
+ "loss": 0.5451,
3026
+ "step": 503
3027
+ },
3028
+ {
3029
+ "epoch": 0.74,
3030
+ "learning_rate": 3.8694607260744745e-06,
3031
+ "loss": 0.5441,
3032
+ "step": 504
3033
+ },
3034
+ {
3035
+ "epoch": 0.74,
3036
+ "learning_rate": 3.832811273714569e-06,
3037
+ "loss": 0.5035,
3038
+ "step": 505
3039
+ },
3040
+ {
3041
+ "epoch": 0.75,
3042
+ "learning_rate": 3.7962950178539282e-06,
3043
+ "loss": 0.547,
3044
+ "step": 506
3045
+ },
3046
+ {
3047
+ "epoch": 0.75,
3048
+ "learning_rate": 3.7599127471561746e-06,
3049
+ "loss": 0.5315,
3050
+ "step": 507
3051
+ },
3052
+ {
3053
+ "epoch": 0.75,
3054
+ "learning_rate": 3.7236652473911817e-06,
3055
+ "loss": 0.4933,
3056
+ "step": 508
3057
+ },
3058
+ {
3059
+ "epoch": 0.75,
3060
+ "learning_rate": 3.687553301418092e-06,
3061
+ "loss": 0.5406,
3062
+ "step": 509
3063
+ },
3064
+ {
3065
+ "epoch": 0.75,
3066
+ "learning_rate": 3.651577689168405e-06,
3067
+ "loss": 0.5649,
3068
+ "step": 510
3069
+ },
3070
+ {
3071
+ "epoch": 0.75,
3072
+ "learning_rate": 3.6157391876291535e-06,
3073
+ "loss": 0.5097,
3074
+ "step": 511
3075
+ },
3076
+ {
3077
+ "epoch": 0.76,
3078
+ "learning_rate": 3.580038570826093e-06,
3079
+ "loss": 0.5512,
3080
+ "step": 512
3081
+ },
3082
+ {
3083
+ "epoch": 0.76,
3084
+ "learning_rate": 3.5444766098070037e-06,
3085
+ "loss": 0.5081,
3086
+ "step": 513
3087
+ },
3088
+ {
3089
+ "epoch": 0.76,
3090
+ "learning_rate": 3.509054072625031e-06,
3091
+ "loss": 0.4807,
3092
+ "step": 514
3093
+ },
3094
+ {
3095
+ "epoch": 0.76,
3096
+ "learning_rate": 3.473771724322108e-06,
3097
+ "loss": 0.5423,
3098
+ "step": 515
3099
+ },
3100
+ {
3101
+ "epoch": 0.76,
3102
+ "learning_rate": 3.4386303269124142e-06,
3103
+ "loss": 0.5105,
3104
+ "step": 516
3105
+ },
3106
+ {
3107
+ "epoch": 0.76,
3108
+ "learning_rate": 3.4036306393659324e-06,
3109
+ "loss": 0.5116,
3110
+ "step": 517
3111
+ },
3112
+ {
3113
+ "epoch": 0.76,
3114
+ "learning_rate": 3.3687734175920505e-06,
3115
+ "loss": 0.5197,
3116
+ "step": 518
3117
+ },
3118
+ {
3119
+ "epoch": 0.77,
3120
+ "learning_rate": 3.334059414423233e-06,
3121
+ "loss": 0.5344,
3122
+ "step": 519
3123
+ },
3124
+ {
3125
+ "epoch": 0.77,
3126
+ "learning_rate": 3.299489379598777e-06,
3127
+ "loss": 0.4957,
3128
+ "step": 520
3129
+ },
3130
+ {
3131
+ "epoch": 0.77,
3132
+ "learning_rate": 3.265064059748597e-06,
3133
+ "loss": 0.5288,
3134
+ "step": 521
3135
+ },
3136
+ {
3137
+ "epoch": 0.77,
3138
+ "learning_rate": 3.2307841983771182e-06,
3139
+ "loss": 0.5743,
3140
+ "step": 522
3141
+ },
3142
+ {
3143
+ "epoch": 0.77,
3144
+ "learning_rate": 3.196650535847201e-06,
3145
+ "loss": 0.5134,
3146
+ "step": 523
3147
+ },
3148
+ {
3149
+ "epoch": 0.77,
3150
+ "learning_rate": 3.162663809364178e-06,
3151
+ "loss": 0.5275,
3152
+ "step": 524
3153
+ },
3154
+ {
3155
+ "epoch": 0.77,
3156
+ "learning_rate": 3.1288247529599035e-06,
3157
+ "loss": 0.5193,
3158
+ "step": 525
3159
+ },
3160
+ {
3161
+ "epoch": 0.78,
3162
+ "learning_rate": 3.095134097476904e-06,
3163
+ "loss": 0.5404,
3164
+ "step": 526
3165
+ },
3166
+ {
3167
+ "epoch": 0.78,
3168
+ "learning_rate": 3.061592570552623e-06,
3169
+ "loss": 0.5008,
3170
+ "step": 527
3171
+ },
3172
+ {
3173
+ "epoch": 0.78,
3174
+ "learning_rate": 3.0282008966036647e-06,
3175
+ "loss": 0.4978,
3176
+ "step": 528
3177
+ },
3178
+ {
3179
+ "epoch": 0.78,
3180
+ "learning_rate": 2.9949597968101883e-06,
3181
+ "loss": 0.514,
3182
+ "step": 529
3183
+ },
3184
+ {
3185
+ "epoch": 0.78,
3186
+ "learning_rate": 2.9618699891002843e-06,
3187
+ "loss": 0.5425,
3188
+ "step": 530
3189
+ },
3190
+ {
3191
+ "epoch": 0.78,
3192
+ "learning_rate": 2.9289321881345257e-06,
3193
+ "loss": 0.5084,
3194
+ "step": 531
3195
+ },
3196
+ {
3197
+ "epoch": 0.78,
3198
+ "learning_rate": 2.8961471052904855e-06,
3199
+ "loss": 0.5268,
3200
+ "step": 532
3201
+ },
3202
+ {
3203
+ "epoch": 0.79,
3204
+ "learning_rate": 2.8635154486473935e-06,
3205
+ "loss": 0.5086,
3206
+ "step": 533
3207
+ },
3208
+ {
3209
+ "epoch": 0.79,
3210
+ "learning_rate": 2.831037922970855e-06,
3211
+ "loss": 0.5416,
3212
+ "step": 534
3213
+ },
3214
+ {
3215
+ "epoch": 0.79,
3216
+ "learning_rate": 2.798715229697592e-06,
3217
+ "loss": 0.5179,
3218
+ "step": 535
3219
+ },
3220
+ {
3221
+ "epoch": 0.79,
3222
+ "learning_rate": 2.7665480669203383e-06,
3223
+ "loss": 0.506,
3224
+ "step": 536
3225
+ },
3226
+ {
3227
+ "epoch": 0.79,
3228
+ "learning_rate": 2.7345371293727306e-06,
3229
+ "loss": 0.5367,
3230
+ "step": 537
3231
+ },
3232
+ {
3233
+ "epoch": 0.79,
3234
+ "learning_rate": 2.702683108414326e-06,
3235
+ "loss": 0.5344,
3236
+ "step": 538
3237
+ },
3238
+ {
3239
+ "epoch": 0.8,
3240
+ "learning_rate": 2.6709866920156434e-06,
3241
+ "loss": 0.5257,
3242
+ "step": 539
3243
+ },
3244
+ {
3245
+ "epoch": 0.8,
3246
+ "learning_rate": 2.639448564743328e-06,
3247
+ "loss": 0.5092,
3248
+ "step": 540
3249
+ },
3250
+ {
3251
+ "epoch": 0.8,
3252
+ "learning_rate": 2.6080694077453663e-06,
3253
+ "loss": 0.5196,
3254
+ "step": 541
3255
+ },
3256
+ {
3257
+ "epoch": 0.8,
3258
+ "learning_rate": 2.57684989873636e-06,
3259
+ "loss": 0.5124,
3260
+ "step": 542
3261
+ },
3262
+ {
3263
+ "epoch": 0.8,
3264
+ "learning_rate": 2.545790711982897e-06,
3265
+ "loss": 0.5225,
3266
+ "step": 543
3267
+ },
3268
+ {
3269
+ "epoch": 0.8,
3270
+ "learning_rate": 2.514892518288988e-06,
3271
+ "loss": 0.533,
3272
+ "step": 544
3273
+ },
3274
+ {
3275
+ "epoch": 0.8,
3276
+ "learning_rate": 2.484155984981588e-06,
3277
+ "loss": 0.5101,
3278
+ "step": 545
3279
+ },
3280
+ {
3281
+ "epoch": 0.81,
3282
+ "learning_rate": 2.4535817758961644e-06,
3283
+ "loss": 0.5121,
3284
+ "step": 546
3285
+ },
3286
+ {
3287
+ "epoch": 0.81,
3288
+ "learning_rate": 2.423170551362375e-06,
3289
+ "loss": 0.518,
3290
+ "step": 547
3291
+ },
3292
+ {
3293
+ "epoch": 0.81,
3294
+ "learning_rate": 2.3929229681898005e-06,
3295
+ "loss": 0.5423,
3296
+ "step": 548
3297
+ },
3298
+ {
3299
+ "epoch": 0.81,
3300
+ "learning_rate": 2.3628396796537588e-06,
3301
+ "loss": 0.486,
3302
+ "step": 549
3303
+ },
3304
+ {
3305
+ "epoch": 0.81,
3306
+ "learning_rate": 2.332921335481205e-06,
3307
+ "loss": 0.5357,
3308
+ "step": 550
3309
+ },
3310
+ {
3311
+ "epoch": 0.81,
3312
+ "learning_rate": 2.3031685818366844e-06,
3313
+ "loss": 0.5072,
3314
+ "step": 551
3315
+ },
3316
+ {
3317
+ "epoch": 0.81,
3318
+ "learning_rate": 2.2735820613083837e-06,
3319
+ "loss": 0.541,
3320
+ "step": 552
3321
+ },
3322
+ {
3323
+ "epoch": 0.82,
3324
+ "learning_rate": 2.2441624128942496e-06,
3325
+ "loss": 0.5146,
3326
+ "step": 553
3327
+ },
3328
+ {
3329
+ "epoch": 0.82,
3330
+ "learning_rate": 2.2149102719882044e-06,
3331
+ "loss": 0.532,
3332
+ "step": 554
3333
+ },
3334
+ {
3335
+ "epoch": 0.82,
3336
+ "learning_rate": 2.185826270366395e-06,
3337
+ "loss": 0.4899,
3338
+ "step": 555
3339
+ },
3340
+ {
3341
+ "epoch": 0.82,
3342
+ "learning_rate": 2.156911036173568e-06,
3343
+ "loss": 0.5348,
3344
+ "step": 556
3345
+ },
3346
+ {
3347
+ "epoch": 0.82,
3348
+ "learning_rate": 2.1281651939094996e-06,
3349
+ "loss": 0.5124,
3350
+ "step": 557
3351
+ },
3352
+ {
3353
+ "epoch": 0.82,
3354
+ "learning_rate": 2.0995893644155007e-06,
3355
+ "loss": 0.5052,
3356
+ "step": 558
3357
+ },
3358
+ {
3359
+ "epoch": 0.82,
3360
+ "learning_rate": 2.0711841648610254e-06,
3361
+ "loss": 0.5208,
3362
+ "step": 559
3363
+ },
3364
+ {
3365
+ "epoch": 0.83,
3366
+ "learning_rate": 2.0429502087303164e-06,
3367
+ "loss": 0.5154,
3368
+ "step": 560
3369
+ },
3370
+ {
3371
+ "epoch": 0.83,
3372
+ "learning_rate": 2.0148881058091764e-06,
3373
+ "loss": 0.5214,
3374
+ "step": 561
3375
+ },
3376
+ {
3377
+ "epoch": 0.83,
3378
+ "learning_rate": 1.9869984621717888e-06,
3379
+ "loss": 0.5241,
3380
+ "step": 562
3381
+ },
3382
+ {
3383
+ "epoch": 0.83,
3384
+ "learning_rate": 1.959281880167626e-06,
3385
+ "loss": 0.5545,
3386
+ "step": 563
3387
+ },
3388
+ {
3389
+ "epoch": 0.83,
3390
+ "learning_rate": 1.931738958408457e-06,
3391
+ "loss": 0.539,
3392
+ "step": 564
3393
+ },
3394
+ {
3395
+ "epoch": 0.83,
3396
+ "learning_rate": 1.904370291755383e-06,
3397
+ "loss": 0.504,
3398
+ "step": 565
3399
+ },
3400
+ {
3401
+ "epoch": 0.83,
3402
+ "learning_rate": 1.8771764713060359e-06,
3403
+ "loss": 0.5185,
3404
+ "step": 566
3405
+ },
3406
+ {
3407
+ "epoch": 0.84,
3408
+ "learning_rate": 1.8501580843817724e-06,
3409
+ "loss": 0.5339,
3410
+ "step": 567
3411
+ },
3412
+ {
3413
+ "epoch": 0.84,
3414
+ "learning_rate": 1.8233157145150183e-06,
3415
+ "loss": 0.5617,
3416
+ "step": 568
3417
+ },
3418
+ {
3419
+ "epoch": 0.84,
3420
+ "learning_rate": 1.796649941436638e-06,
3421
+ "loss": 0.5167,
3422
+ "step": 569
3423
+ },
3424
+ {
3425
+ "epoch": 0.84,
3426
+ "learning_rate": 1.7701613410634367e-06,
3427
+ "loss": 0.5188,
3428
+ "step": 570
3429
+ },
3430
+ {
3431
+ "epoch": 0.84,
3432
+ "learning_rate": 1.7438504854857164e-06,
3433
+ "loss": 0.5493,
3434
+ "step": 571
3435
+ },
3436
+ {
3437
+ "epoch": 0.84,
3438
+ "learning_rate": 1.717717942954914e-06,
3439
+ "loss": 0.5308,
3440
+ "step": 572
3441
+ },
3442
+ {
3443
+ "epoch": 0.85,
3444
+ "learning_rate": 1.6917642778713294e-06,
3445
+ "loss": 0.5231,
3446
+ "step": 573
3447
+ },
3448
+ {
3449
+ "epoch": 0.85,
3450
+ "learning_rate": 1.6659900507719406e-06,
3451
+ "loss": 0.5274,
3452
+ "step": 574
3453
+ },
3454
+ {
3455
+ "epoch": 0.85,
3456
+ "learning_rate": 1.6403958183182977e-06,
3457
+ "loss": 0.5454,
3458
+ "step": 575
3459
+ },
3460
+ {
3461
+ "epoch": 0.85,
3462
+ "learning_rate": 1.614982133284495e-06,
3463
+ "loss": 0.5175,
3464
+ "step": 576
3465
+ },
3466
+ {
3467
+ "epoch": 0.85,
3468
+ "learning_rate": 1.5897495445452338e-06,
3469
+ "loss": 0.5067,
3470
+ "step": 577
3471
+ },
3472
+ {
3473
+ "epoch": 0.85,
3474
+ "learning_rate": 1.5646985970639717e-06,
3475
+ "loss": 0.5192,
3476
+ "step": 578
3477
+ },
3478
+ {
3479
+ "epoch": 0.85,
3480
+ "learning_rate": 1.5398298318811467e-06,
3481
+ "loss": 0.5074,
3482
+ "step": 579
3483
+ },
3484
+ {
3485
+ "epoch": 0.86,
3486
+ "learning_rate": 1.5151437861025032e-06,
3487
+ "loss": 0.5183,
3488
+ "step": 580
3489
+ },
3490
+ {
3491
+ "epoch": 0.86,
3492
+ "learning_rate": 1.4906409928874788e-06,
3493
+ "loss": 0.5311,
3494
+ "step": 581
3495
+ },
3496
+ {
3497
+ "epoch": 0.86,
3498
+ "learning_rate": 1.466321981437694e-06,
3499
+ "loss": 0.5085,
3500
+ "step": 582
3501
+ },
3502
+ {
3503
+ "epoch": 0.86,
3504
+ "learning_rate": 1.4421872769855262e-06,
3505
+ "loss": 0.534,
3506
+ "step": 583
3507
+ },
3508
+ {
3509
+ "epoch": 0.86,
3510
+ "learning_rate": 1.4182374007827605e-06,
3511
+ "loss": 0.5273,
3512
+ "step": 584
3513
+ },
3514
+ {
3515
+ "epoch": 0.86,
3516
+ "learning_rate": 1.3944728700893395e-06,
3517
+ "loss": 0.515,
3518
+ "step": 585
3519
+ },
3520
+ {
3521
+ "epoch": 0.86,
3522
+ "learning_rate": 1.3708941981621814e-06,
3523
+ "loss": 0.5524,
3524
+ "step": 586
3525
+ },
3526
+ {
3527
+ "epoch": 0.87,
3528
+ "learning_rate": 1.3475018942441055e-06,
3529
+ "loss": 0.518,
3530
+ "step": 587
3531
+ },
3532
+ {
3533
+ "epoch": 0.87,
3534
+ "learning_rate": 1.324296463552821e-06,
3535
+ "loss": 0.5227,
3536
+ "step": 588
3537
+ },
3538
+ {
3539
+ "epoch": 0.87,
3540
+ "learning_rate": 1.3012784072700335e-06,
3541
+ "loss": 0.5033,
3542
+ "step": 589
3543
+ },
3544
+ {
3545
+ "epoch": 0.87,
3546
+ "learning_rate": 1.2784482225306061e-06,
3547
+ "loss": 0.495,
3548
+ "step": 590
3549
+ },
3550
+ {
3551
+ "epoch": 0.87,
3552
+ "learning_rate": 1.2558064024118177e-06,
3553
+ "loss": 0.5146,
3554
+ "step": 591
3555
+ },
3556
+ {
3557
+ "epoch": 0.87,
3558
+ "learning_rate": 1.2333534359227383e-06,
3559
+ "loss": 0.5102,
3560
+ "step": 592
3561
+ },
3562
+ {
3563
+ "epoch": 0.87,
3564
+ "learning_rate": 1.2110898079936394e-06,
3565
+ "loss": 0.5031,
3566
+ "step": 593
3567
+ },
3568
+ {
3569
+ "epoch": 0.88,
3570
+ "learning_rate": 1.1890159994655425e-06,
3571
+ "loss": 0.5057,
3572
+ "step": 594
3573
+ },
3574
+ {
3575
+ "epoch": 0.88,
3576
+ "learning_rate": 1.1671324870798195e-06,
3577
+ "loss": 0.54,
3578
+ "step": 595
3579
+ },
3580
+ {
3581
+ "epoch": 0.88,
3582
+ "learning_rate": 1.1454397434679022e-06,
3583
+ "loss": 0.5218,
3584
+ "step": 596
3585
+ },
3586
+ {
3587
+ "epoch": 0.88,
3588
+ "learning_rate": 1.1239382371410713e-06,
3589
+ "loss": 0.5069,
3590
+ "step": 597
3591
+ },
3592
+ {
3593
+ "epoch": 0.88,
3594
+ "learning_rate": 1.1026284324803493e-06,
3595
+ "loss": 0.5505,
3596
+ "step": 598
3597
+ },
3598
+ {
3599
+ "epoch": 0.88,
3600
+ "learning_rate": 1.0815107897264555e-06,
3601
+ "loss": 0.5026,
3602
+ "step": 599
3603
+ },
3604
+ {
3605
+ "epoch": 0.88,
3606
+ "learning_rate": 1.060585764969867e-06,
3607
+ "loss": 0.5239,
3608
+ "step": 600
3609
+ },
3610
+ {
3611
+ "epoch": 0.89,
3612
+ "learning_rate": 1.039853810140987e-06,
3613
+ "loss": 0.509,
3614
+ "step": 601
3615
+ },
3616
+ {
3617
+ "epoch": 0.89,
3618
+ "learning_rate": 1.0193153730003603e-06,
3619
+ "loss": 0.5112,
3620
+ "step": 602
3621
+ },
3622
+ {
3623
+ "epoch": 0.89,
3624
+ "learning_rate": 9.989708971290212e-07,
3625
+ "loss": 0.5269,
3626
+ "step": 603
3627
+ },
3628
+ {
3629
+ "epoch": 0.89,
3630
+ "learning_rate": 9.788208219188932e-07,
3631
+ "loss": 0.4989,
3632
+ "step": 604
3633
+ },
3634
+ {
3635
+ "epoch": 0.89,
3636
+ "learning_rate": 9.588655825633274e-07,
3637
+ "loss": 0.5488,
3638
+ "step": 605
3639
+ },
3640
+ {
3641
+ "epoch": 0.89,
3642
+ "learning_rate": 9.391056100476736e-07,
3643
+ "loss": 0.5047,
3644
+ "step": 606
3645
+ },
3646
+ {
3647
+ "epoch": 0.9,
3648
+ "learning_rate": 9.195413311399948e-07,
3649
+ "loss": 0.518,
3650
+ "step": 607
3651
+ },
3652
+ {
3653
+ "epoch": 0.9,
3654
+ "learning_rate": 9.001731683818338e-07,
3655
+ "loss": 0.513,
3656
+ "step": 608
3657
+ },
3658
+ {
3659
+ "epoch": 0.9,
3660
+ "learning_rate": 8.810015400790994e-07,
3661
+ "loss": 0.5383,
3662
+ "step": 609
3663
+ },
3664
+ {
3665
+ "epoch": 0.9,
3666
+ "learning_rate": 8.620268602930271e-07,
3667
+ "loss": 0.5455,
3668
+ "step": 610
3669
+ },
3670
+ {
3671
+ "epoch": 0.9,
3672
+ "learning_rate": 8.432495388312345e-07,
3673
+ "loss": 0.538,
3674
+ "step": 611
3675
+ },
3676
+ {
3677
+ "epoch": 0.9,
3678
+ "learning_rate": 8.246699812388714e-07,
3679
+ "loss": 0.5231,
3680
+ "step": 612
3681
+ },
3682
+ {
3683
+ "epoch": 0.9,
3684
+ "learning_rate": 8.062885887898642e-07,
3685
+ "loss": 0.5171,
3686
+ "step": 613
3687
+ },
3688
+ {
3689
+ "epoch": 0.91,
3690
+ "learning_rate": 7.881057584782448e-07,
3691
+ "loss": 0.5394,
3692
+ "step": 614
3693
+ },
3694
+ {
3695
+ "epoch": 0.91,
3696
+ "learning_rate": 7.701218830095825e-07,
3697
+ "loss": 0.5486,
3698
+ "step": 615
3699
+ },
3700
+ {
3701
+ "epoch": 0.91,
3702
+ "learning_rate": 7.523373507924947e-07,
3703
+ "loss": 0.5167,
3704
+ "step": 616
3705
+ },
3706
+ {
3707
+ "epoch": 0.91,
3708
+ "learning_rate": 7.34752545930264e-07,
3709
+ "loss": 0.5282,
3710
+ "step": 617
3711
+ },
3712
+ {
3713
+ "epoch": 0.91,
3714
+ "learning_rate": 7.17367848212539e-07,
3715
+ "loss": 0.5135,
3716
+ "step": 618
3717
+ },
3718
+ {
3719
+ "epoch": 0.91,
3720
+ "learning_rate": 7.001836331071365e-07,
3721
+ "loss": 0.5359,
3722
+ "step": 619
3723
+ },
3724
+ {
3725
+ "epoch": 0.91,
3726
+ "learning_rate": 6.83200271751927e-07,
3727
+ "loss": 0.571,
3728
+ "step": 620
3729
+ },
3730
+ {
3731
+ "epoch": 0.92,
3732
+ "learning_rate": 6.664181309468232e-07,
3733
+ "loss": 0.4974,
3734
+ "step": 621
3735
+ },
3736
+ {
3737
+ "epoch": 0.92,
3738
+ "learning_rate": 6.498375731458529e-07,
3739
+ "loss": 0.5407,
3740
+ "step": 622
3741
+ },
3742
+ {
3743
+ "epoch": 0.92,
3744
+ "learning_rate": 6.334589564493343e-07,
3745
+ "loss": 0.5143,
3746
+ "step": 623
3747
+ },
3748
+ {
3749
+ "epoch": 0.92,
3750
+ "learning_rate": 6.17282634596148e-07,
3751
+ "loss": 0.5116,
3752
+ "step": 624
3753
+ },
3754
+ {
3755
+ "epoch": 0.92,
3756
+ "learning_rate": 6.013089569560826e-07,
3757
+ "loss": 0.5419,
3758
+ "step": 625
3759
+ },
3760
+ {
3761
+ "epoch": 0.92,
3762
+ "learning_rate": 5.85538268522301e-07,
3763
+ "loss": 0.5208,
3764
+ "step": 626
3765
+ },
3766
+ {
3767
+ "epoch": 0.92,
3768
+ "learning_rate": 5.699709099038852e-07,
3769
+ "loss": 0.5154,
3770
+ "step": 627
3771
+ },
3772
+ {
3773
+ "epoch": 0.93,
3774
+ "learning_rate": 5.546072173184791e-07,
3775
+ "loss": 0.5256,
3776
+ "step": 628
3777
+ },
3778
+ {
3779
+ "epoch": 0.93,
3780
+ "learning_rate": 5.394475225850338e-07,
3781
+ "loss": 0.538,
3782
+ "step": 629
3783
+ },
3784
+ {
3785
+ "epoch": 0.93,
3786
+ "learning_rate": 5.244921531166247e-07,
3787
+ "loss": 0.5175,
3788
+ "step": 630
3789
+ },
3790
+ {
3791
+ "epoch": 0.93,
3792
+ "learning_rate": 5.097414319134042e-07,
3793
+ "loss": 0.5592,
3794
+ "step": 631
3795
+ },
3796
+ {
3797
+ "epoch": 0.93,
3798
+ "learning_rate": 4.951956775556e-07,
3799
+ "loss": 0.509,
3800
+ "step": 632
3801
+ },
3802
+ {
3803
+ "epoch": 0.93,
3804
+ "learning_rate": 4.808552041966608e-07,
3805
+ "loss": 0.5273,
3806
+ "step": 633
3807
+ },
3808
+ {
3809
+ "epoch": 0.94,
3810
+ "learning_rate": 4.667203215564431e-07,
3811
+ "loss": 0.4977,
3812
+ "step": 634
3813
+ },
3814
+ {
3815
+ "epoch": 0.94,
3816
+ "learning_rate": 4.5279133491454406e-07,
3817
+ "loss": 0.5225,
3818
+ "step": 635
3819
+ },
3820
+ {
3821
+ "epoch": 0.94,
3822
+ "learning_rate": 4.3906854510370245e-07,
3823
+ "loss": 0.5204,
3824
+ "step": 636
3825
+ },
3826
+ {
3827
+ "epoch": 0.94,
3828
+ "learning_rate": 4.255522485032959e-07,
3829
+ "loss": 0.5008,
3830
+ "step": 637
3831
+ },
3832
+ {
3833
+ "epoch": 0.94,
3834
+ "learning_rate": 4.1224273703294515e-07,
3835
+ "loss": 0.5133,
3836
+ "step": 638
3837
+ },
3838
+ {
3839
+ "epoch": 0.94,
3840
+ "learning_rate": 3.991402981462045e-07,
3841
+ "loss": 0.4845,
3842
+ "step": 639
3843
+ },
3844
+ {
3845
+ "epoch": 0.94,
3846
+ "learning_rate": 3.862452148243623e-07,
3847
+ "loss": 0.4926,
3848
+ "step": 640
3849
+ },
3850
+ {
3851
+ "epoch": 0.95,
3852
+ "learning_rate": 3.735577655703171e-07,
3853
+ "loss": 0.5518,
3854
+ "step": 641
3855
+ },
3856
+ {
3857
+ "epoch": 0.95,
3858
+ "learning_rate": 3.610782244025768e-07,
3859
+ "loss": 0.4797,
3860
+ "step": 642
3861
+ },
3862
+ {
3863
+ "epoch": 0.95,
3864
+ "learning_rate": 3.488068608493245e-07,
3865
+ "loss": 0.5197,
3866
+ "step": 643
3867
+ },
3868
+ {
3869
+ "epoch": 0.95,
3870
+ "learning_rate": 3.367439399426087e-07,
3871
+ "loss": 0.505,
3872
+ "step": 644
3873
+ },
3874
+ {
3875
+ "epoch": 0.95,
3876
+ "learning_rate": 3.2488972221262125e-07,
3877
+ "loss": 0.5488,
3878
+ "step": 645
3879
+ },
3880
+ {
3881
+ "epoch": 0.95,
3882
+ "learning_rate": 3.132444636820575e-07,
3883
+ "loss": 0.5387,
3884
+ "step": 646
3885
+ },
3886
+ {
3887
+ "epoch": 0.95,
3888
+ "learning_rate": 3.018084158606005e-07,
3889
+ "loss": 0.5521,
3890
+ "step": 647
3891
+ },
3892
+ {
3893
+ "epoch": 0.96,
3894
+ "learning_rate": 2.905818257394799e-07,
3895
+ "loss": 0.5214,
3896
+ "step": 648
3897
+ },
3898
+ {
3899
+ "epoch": 0.96,
3900
+ "learning_rate": 2.79564935786143e-07,
3901
+ "loss": 0.5068,
3902
+ "step": 649
3903
+ },
3904
+ {
3905
+ "epoch": 0.96,
3906
+ "learning_rate": 2.687579839390153e-07,
3907
+ "loss": 0.4791,
3908
+ "step": 650
3909
+ },
3910
+ {
3911
+ "epoch": 0.96,
3912
+ "learning_rate": 2.5816120360236176e-07,
3913
+ "loss": 0.4895,
3914
+ "step": 651
3915
+ },
3916
+ {
3917
+ "epoch": 0.96,
3918
+ "learning_rate": 2.4777482364124695e-07,
3919
+ "loss": 0.5501,
3920
+ "step": 652
3921
+ },
3922
+ {
3923
+ "epoch": 0.96,
3924
+ "learning_rate": 2.375990683765894e-07,
3925
+ "loss": 0.4985,
3926
+ "step": 653
3927
+ },
3928
+ {
3929
+ "epoch": 0.96,
3930
+ "learning_rate": 2.2763415758032316e-07,
3931
+ "loss": 0.5852,
3932
+ "step": 654
3933
+ },
3934
+ {
3935
+ "epoch": 0.97,
3936
+ "learning_rate": 2.1788030647064363e-07,
3937
+ "loss": 0.5335,
3938
+ "step": 655
3939
+ },
3940
+ {
3941
+ "epoch": 0.97,
3942
+ "learning_rate": 2.0833772570736376e-07,
3943
+ "loss": 0.5512,
3944
+ "step": 656
3945
+ },
3946
+ {
3947
+ "epoch": 0.97,
3948
+ "learning_rate": 1.9900662138736204e-07,
3949
+ "loss": 0.5202,
3950
+ "step": 657
3951
+ },
3952
+ {
3953
+ "epoch": 0.97,
3954
+ "learning_rate": 1.8988719504013375e-07,
3955
+ "loss": 0.4981,
3956
+ "step": 658
3957
+ },
3958
+ {
3959
+ "epoch": 0.97,
3960
+ "learning_rate": 1.809796436234379e-07,
3961
+ "loss": 0.5497,
3962
+ "step": 659
3963
+ },
3964
+ {
3965
+ "epoch": 0.97,
3966
+ "learning_rate": 1.7228415951904165e-07,
3967
+ "loss": 0.5066,
3968
+ "step": 660
3969
+ },
3970
+ {
3971
+ "epoch": 0.97,
3972
+ "learning_rate": 1.6380093052856482e-07,
3973
+ "loss": 0.5474,
3974
+ "step": 661
3975
+ },
3976
+ {
3977
+ "epoch": 0.98,
3978
+ "learning_rate": 1.5553013986942645e-07,
3979
+ "loss": 0.5365,
3980
+ "step": 662
3981
+ },
3982
+ {
3983
+ "epoch": 0.98,
3984
+ "learning_rate": 1.474719661708901e-07,
3985
+ "loss": 0.5291,
3986
+ "step": 663
3987
+ },
3988
+ {
3989
+ "epoch": 0.98,
3990
+ "learning_rate": 1.3962658347019819e-07,
3991
+ "loss": 0.5479,
3992
+ "step": 664
3993
+ },
3994
+ {
3995
+ "epoch": 0.98,
3996
+ "learning_rate": 1.3199416120881714e-07,
3997
+ "loss": 0.5541,
3998
+ "step": 665
3999
+ },
4000
+ {
4001
+ "epoch": 0.98,
4002
+ "learning_rate": 1.245748642287814e-07,
4003
+ "loss": 0.5235,
4004
+ "step": 666
4005
+ },
4006
+ {
4007
+ "epoch": 0.98,
4008
+ "learning_rate": 1.1736885276912747e-07,
4009
+ "loss": 0.536,
4010
+ "step": 667
4011
+ },
4012
+ {
4013
+ "epoch": 0.99,
4014
+ "learning_rate": 1.103762824624377e-07,
4015
+ "loss": 0.5359,
4016
+ "step": 668
4017
+ },
4018
+ {
4019
+ "epoch": 0.99,
4020
+ "learning_rate": 1.0359730433147308e-07,
4021
+ "loss": 0.485,
4022
+ "step": 669
4023
+ },
4024
+ {
4025
+ "epoch": 0.99,
4026
+ "learning_rate": 9.70320647859213e-08,
4027
+ "loss": 0.5196,
4028
+ "step": 670
4029
+ },
4030
+ {
4031
+ "epoch": 0.99,
4032
+ "learning_rate": 9.068070561922382e-08,
4033
+ "loss": 0.5191,
4034
+ "step": 671
4035
+ },
4036
+ {
4037
+ "epoch": 0.99,
4038
+ "learning_rate": 8.454336400552154e-08,
4039
+ "loss": 0.5022,
4040
+ "step": 672
4041
+ },
4042
+ {
4043
+ "epoch": 0.99,
4044
+ "learning_rate": 7.862017249668507e-08,
4045
+ "loss": 0.539,
4046
+ "step": 673
4047
+ },
4048
+ {
4049
+ "epoch": 0.99,
4050
+ "learning_rate": 7.291125901946027e-08,
4051
+ "loss": 0.5083,
4052
+ "step": 674
4053
+ },
4054
+ {
4055
+ "epoch": 1.0,
4056
+ "learning_rate": 6.741674687269828e-08,
4057
+ "loss": 0.5325,
4058
+ "step": 675
4059
+ },
4060
+ {
4061
+ "epoch": 1.0,
4062
+ "learning_rate": 6.21367547246976e-08,
4063
+ "loss": 0.4958,
4064
+ "step": 676
4065
+ },
4066
+ {
4067
+ "epoch": 1.0,
4068
+ "learning_rate": 5.70713966106351e-08,
4069
+ "loss": 0.512,
4070
+ "step": 677
4071
+ },
4072
+ {
4073
+ "epoch": 1.0,
4074
+ "step": 677,
4075
+ "total_flos": 6.630352487616348e+17,
4076
+ "train_loss": 0.6011118755030668,
4077
+ "train_runtime": 14577.6167,
4078
+ "train_samples_per_second": 1.488,
4079
+ "train_steps_per_second": 0.046
4080
+ }
4081
+ ],
4082
+ "max_steps": 677,
4083
+ "num_train_epochs": 1,
4084
+ "total_flos": 6.630352487616348e+17,
4085
+ "trial_name": null,
4086
+ "trial_params": null
4087
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8422b367ef5a140e4c5d59f6839cb3f21d8c929ae9ecca1695d1cca17a759dde
3
+ size 5179
yolo.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78574072990d14ac08fad69354b992a42cd438947a17daa6e275e05620bff390
3
+ size 52028438
yolo_llama_visnav_test.ipynb ADDED
The diff for this file is too large to render. See raw diff