LeoChiuu commited on
Commit
fa823d5
1 Parent(s): c9fb49f

Add new SentenceTransformer model.

Browse files
Files changed (2) hide show
  1. README.md +95 -96
  2. model.safetensors +1 -1
README.md CHANGED
@@ -46,7 +46,7 @@ tags:
46
  - feature-extraction
47
  - generated_from_trainer
48
  - dataset_size:560
49
- - loss:MultipleNegativesRankingLoss
50
  widget:
51
  - source_sentence: Let's search inside
52
  sentences:
@@ -84,109 +84,109 @@ model-index:
84
  type: custom-arc-semantics-data
85
  metrics:
86
  - type: cosine_accuracy
87
- value: 0.85
88
  name: Cosine Accuracy
89
  - type: cosine_accuracy_threshold
90
- value: 0.49632835388183594
91
  name: Cosine Accuracy Threshold
92
  - type: cosine_f1
93
- value: 0.8727272727272727
94
  name: Cosine F1
95
  - type: cosine_f1_threshold
96
- value: 0.48691314458847046
97
  name: Cosine F1 Threshold
98
  - type: cosine_precision
99
- value: 0.8888888888888888
100
  name: Cosine Precision
101
  - type: cosine_recall
102
- value: 0.8571428571428571
103
  name: Cosine Recall
104
  - type: cosine_ap
105
- value: 0.927175101411552
106
  name: Cosine Ap
107
  - type: dot_accuracy
108
- value: 0.85
109
  name: Dot Accuracy
110
  - type: dot_accuracy_threshold
111
- value: 0.4963283836841583
112
  name: Dot Accuracy Threshold
113
  - type: dot_f1
114
- value: 0.8727272727272727
115
  name: Dot F1
116
  - type: dot_f1_threshold
117
- value: 0.48691320419311523
118
  name: Dot F1 Threshold
119
  - type: dot_precision
120
- value: 0.8888888888888888
121
  name: Dot Precision
122
  - type: dot_recall
123
- value: 0.8571428571428571
124
  name: Dot Recall
125
  - type: dot_ap
126
- value: 0.927175101411552
127
  name: Dot Ap
128
  - type: manhattan_accuracy
129
- value: 0.8428571428571429
130
  name: Manhattan Accuracy
131
  - type: manhattan_accuracy_threshold
132
- value: 15.624195098876953
133
  name: Manhattan Accuracy Threshold
134
  - type: manhattan_f1
135
- value: 0.8681318681318683
136
  name: Manhattan F1
137
  - type: manhattan_f1_threshold
138
- value: 18.23479461669922
139
  name: Manhattan F1 Threshold
140
  - type: manhattan_precision
141
- value: 0.8061224489795918
142
  name: Manhattan Precision
143
  - type: manhattan_recall
144
- value: 0.9404761904761905
145
  name: Manhattan Recall
146
  - type: manhattan_ap
147
- value: 0.9264219833665228
148
  name: Manhattan Ap
149
  - type: euclidean_accuracy
150
- value: 0.85
151
  name: Euclidean Accuracy
152
  - type: euclidean_accuracy_threshold
153
- value: 1.00364351272583
154
  name: Euclidean Accuracy Threshold
155
  - type: euclidean_f1
156
- value: 0.8727272727272727
157
  name: Euclidean F1
158
  - type: euclidean_f1_threshold
159
- value: 1.0129987001419067
160
  name: Euclidean F1 Threshold
161
  - type: euclidean_precision
162
- value: 0.8888888888888888
163
  name: Euclidean Precision
164
  - type: euclidean_recall
165
- value: 0.8571428571428571
166
  name: Euclidean Recall
167
  - type: euclidean_ap
168
- value: 0.927175101411552
169
  name: Euclidean Ap
170
  - type: max_accuracy
171
- value: 0.85
172
  name: Max Accuracy
173
  - type: max_accuracy_threshold
174
- value: 15.624195098876953
175
  name: Max Accuracy Threshold
176
  - type: max_f1
177
- value: 0.8727272727272727
178
  name: Max F1
179
  - type: max_f1_threshold
180
- value: 18.23479461669922
181
  name: Max F1 Threshold
182
  - type: max_precision
183
- value: 0.8888888888888888
184
  name: Max Precision
185
  - type: max_recall
186
- value: 0.9404761904761905
187
  name: Max Recall
188
  - type: max_ap
189
- value: 0.927175101411552
190
  name: Max Ap
191
  ---
192
 
@@ -288,41 +288,41 @@ You can finetune this model on your own dataset.
288
 
289
  | Metric | Value |
290
  |:-----------------------------|:-----------|
291
- | cosine_accuracy | 0.85 |
292
- | cosine_accuracy_threshold | 0.4963 |
293
- | cosine_f1 | 0.8727 |
294
- | cosine_f1_threshold | 0.4869 |
295
- | cosine_precision | 0.8889 |
296
- | cosine_recall | 0.8571 |
297
- | cosine_ap | 0.9272 |
298
- | dot_accuracy | 0.85 |
299
- | dot_accuracy_threshold | 0.4963 |
300
- | dot_f1 | 0.8727 |
301
- | dot_f1_threshold | 0.4869 |
302
- | dot_precision | 0.8889 |
303
- | dot_recall | 0.8571 |
304
- | dot_ap | 0.9272 |
305
- | manhattan_accuracy | 0.8429 |
306
- | manhattan_accuracy_threshold | 15.6242 |
307
- | manhattan_f1 | 0.8681 |
308
- | manhattan_f1_threshold | 18.2348 |
309
- | manhattan_precision | 0.8061 |
310
- | manhattan_recall | 0.9405 |
311
- | manhattan_ap | 0.9264 |
312
- | euclidean_accuracy | 0.85 |
313
- | euclidean_accuracy_threshold | 1.0036 |
314
- | euclidean_f1 | 0.8727 |
315
- | euclidean_f1_threshold | 1.013 |
316
- | euclidean_precision | 0.8889 |
317
- | euclidean_recall | 0.8571 |
318
- | euclidean_ap | 0.9272 |
319
- | max_accuracy | 0.85 |
320
- | max_accuracy_threshold | 15.6242 |
321
- | max_f1 | 0.8727 |
322
- | max_f1_threshold | 18.2348 |
323
- | max_precision | 0.8889 |
324
- | max_recall | 0.9405 |
325
- | **max_ap** | **0.9272** |
326
 
327
  <!--
328
  ## Bias, Risks and Limitations
@@ -356,11 +356,11 @@ You can finetune this model on your own dataset.
356
  | <code>When it was dinner</code> | <code>Dinner time</code> | <code>1</code> |
357
  | <code>Did you cook chicken noodle last night?</code> | <code>Did you make chicken noodle for dinner?</code> | <code>1</code> |
358
  | <code>Someone who can change item</code> | <code>Someone who uses magic that turns something into something. </code> | <code>1</code> |
359
- * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
360
  ```json
361
  {
362
  "scale": 20.0,
363
- "similarity_fct": "cos_sim"
364
  }
365
  ```
366
 
@@ -382,11 +382,11 @@ You can finetune this model on your own dataset.
382
  | <code>Let's check inside</code> | <code>Let's search inside</code> | <code>1</code> |
383
  | <code>Sohpie, are you okay?</code> | <code>Sophie Are you pressured?</code> | <code>0</code> |
384
  | <code>This wine glass is related.</code> | <code>This sword looks important.</code> | <code>0</code> |
385
- * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
386
  ```json
387
  {
388
  "scale": 20.0,
389
- "similarity_fct": "cos_sim"
390
  }
391
  ```
392
 
@@ -521,19 +521,19 @@ You can finetune this model on your own dataset.
521
  | Epoch | Step | Training Loss | loss | custom-arc-semantics-data_max_ap |
522
  |:-----:|:----:|:-------------:|:------:|:--------------------------------:|
523
  | None | 0 | - | - | 0.9254 |
524
- | 1.0 | 70 | 1.1722 | 1.2175 | 0.9237 |
525
- | 2.0 | 140 | 0.7774 | 1.0454 | 0.9291 |
526
- | 3.0 | 210 | 0.4122 | 1.0024 | 0.9316 |
527
- | 4.0 | 280 | 0.229 | 0.9819 | 0.9285 |
528
- | 5.0 | 350 | 0.1509 | 0.9215 | 0.9321 |
529
- | 6.0 | 420 | 0.0988 | 0.9119 | 0.9312 |
530
- | 7.0 | 490 | 0.0772 | 0.8962 | 0.9303 |
531
- | 8.0 | 560 | 0.0564 | 0.8905 | 0.9272 |
532
- | 9.0 | 630 | 0.0449 | 0.8878 | 0.9266 |
533
- | 10.0 | 700 | 0.037 | 0.8841 | 0.9273 |
534
- | 11.0 | 770 | 0.0387 | 0.8881 | 0.9265 |
535
- | 12.0 | 840 | 0.0332 | 0.8884 | 0.9274 |
536
- | 13.0 | 910 | 0.032 | 0.8890 | 0.9272 |
537
 
538
 
539
  ### Framework Versions
@@ -562,15 +562,14 @@ You can finetune this model on your own dataset.
562
  }
563
  ```
564
 
565
- #### MultipleNegativesRankingLoss
566
  ```bibtex
567
- @misc{henderson2017efficient,
568
- title={Efficient Natural Language Response Suggestion for Smart Reply},
569
- author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
570
- year={2017},
571
- eprint={1705.00652},
572
- archivePrefix={arXiv},
573
- primaryClass={cs.CL}
574
  }
575
  ```
576
 
 
46
  - feature-extraction
47
  - generated_from_trainer
48
  - dataset_size:560
49
+ - loss:CoSENTLoss
50
  widget:
51
  - source_sentence: Let's search inside
52
  sentences:
 
84
  type: custom-arc-semantics-data
85
  metrics:
86
  - type: cosine_accuracy
87
+ value: 0.9285714285714286
88
  name: Cosine Accuracy
89
  - type: cosine_accuracy_threshold
90
+ value: 0.42927420139312744
91
  name: Cosine Accuracy Threshold
92
  - type: cosine_f1
93
+ value: 0.9425287356321839
94
  name: Cosine F1
95
  - type: cosine_f1_threshold
96
+ value: 0.2269928753376007
97
  name: Cosine F1 Threshold
98
  - type: cosine_precision
99
+ value: 0.9111111111111111
100
  name: Cosine Precision
101
  - type: cosine_recall
102
+ value: 0.9761904761904762
103
  name: Cosine Recall
104
  - type: cosine_ap
105
+ value: 0.9720863676601571
106
  name: Cosine Ap
107
  - type: dot_accuracy
108
+ value: 0.9285714285714286
109
  name: Dot Accuracy
110
  - type: dot_accuracy_threshold
111
+ value: 0.42927438020706177
112
  name: Dot Accuracy Threshold
113
  - type: dot_f1
114
+ value: 0.9425287356321839
115
  name: Dot F1
116
  - type: dot_f1_threshold
117
+ value: 0.22699296474456787
118
  name: Dot F1 Threshold
119
  - type: dot_precision
120
+ value: 0.9111111111111111
121
  name: Dot Precision
122
  - type: dot_recall
123
+ value: 0.9761904761904762
124
  name: Dot Recall
125
  - type: dot_ap
126
+ value: 0.9720863676601571
127
  name: Dot Ap
128
  - type: manhattan_accuracy
129
+ value: 0.9285714285714286
130
  name: Manhattan Accuracy
131
  - type: manhattan_accuracy_threshold
132
+ value: 16.630834579467773
133
  name: Manhattan Accuracy Threshold
134
  - type: manhattan_f1
135
+ value: 0.9431818181818182
136
  name: Manhattan F1
137
  - type: manhattan_f1_threshold
138
+ value: 19.740108489990234
139
  name: Manhattan F1 Threshold
140
  - type: manhattan_precision
141
+ value: 0.9021739130434783
142
  name: Manhattan Precision
143
  - type: manhattan_recall
144
+ value: 0.9880952380952381
145
  name: Manhattan Recall
146
  - type: manhattan_ap
147
+ value: 0.9728353486982702
148
  name: Manhattan Ap
149
  - type: euclidean_accuracy
150
+ value: 0.9285714285714286
151
  name: Euclidean Accuracy
152
  - type: euclidean_accuracy_threshold
153
+ value: 1.068155288696289
154
  name: Euclidean Accuracy Threshold
155
  - type: euclidean_f1
156
+ value: 0.9425287356321839
157
  name: Euclidean F1
158
  - type: euclidean_f1_threshold
159
+ value: 1.2433418035507202
160
  name: Euclidean F1 Threshold
161
  - type: euclidean_precision
162
+ value: 0.9111111111111111
163
  name: Euclidean Precision
164
  - type: euclidean_recall
165
+ value: 0.9761904761904762
166
  name: Euclidean Recall
167
  - type: euclidean_ap
168
+ value: 0.9720863676601571
169
  name: Euclidean Ap
170
  - type: max_accuracy
171
+ value: 0.9285714285714286
172
  name: Max Accuracy
173
  - type: max_accuracy_threshold
174
+ value: 16.630834579467773
175
  name: Max Accuracy Threshold
176
  - type: max_f1
177
+ value: 0.9431818181818182
178
  name: Max F1
179
  - type: max_f1_threshold
180
+ value: 19.740108489990234
181
  name: Max F1 Threshold
182
  - type: max_precision
183
+ value: 0.9111111111111111
184
  name: Max Precision
185
  - type: max_recall
186
+ value: 0.9880952380952381
187
  name: Max Recall
188
  - type: max_ap
189
+ value: 0.9728353486982702
190
  name: Max Ap
191
  ---
192
 
 
288
 
289
  | Metric | Value |
290
  |:-----------------------------|:-----------|
291
+ | cosine_accuracy | 0.9286 |
292
+ | cosine_accuracy_threshold | 0.4293 |
293
+ | cosine_f1 | 0.9425 |
294
+ | cosine_f1_threshold | 0.227 |
295
+ | cosine_precision | 0.9111 |
296
+ | cosine_recall | 0.9762 |
297
+ | cosine_ap | 0.9721 |
298
+ | dot_accuracy | 0.9286 |
299
+ | dot_accuracy_threshold | 0.4293 |
300
+ | dot_f1 | 0.9425 |
301
+ | dot_f1_threshold | 0.227 |
302
+ | dot_precision | 0.9111 |
303
+ | dot_recall | 0.9762 |
304
+ | dot_ap | 0.9721 |
305
+ | manhattan_accuracy | 0.9286 |
306
+ | manhattan_accuracy_threshold | 16.6308 |
307
+ | manhattan_f1 | 0.9432 |
308
+ | manhattan_f1_threshold | 19.7401 |
309
+ | manhattan_precision | 0.9022 |
310
+ | manhattan_recall | 0.9881 |
311
+ | manhattan_ap | 0.9728 |
312
+ | euclidean_accuracy | 0.9286 |
313
+ | euclidean_accuracy_threshold | 1.0682 |
314
+ | euclidean_f1 | 0.9425 |
315
+ | euclidean_f1_threshold | 1.2433 |
316
+ | euclidean_precision | 0.9111 |
317
+ | euclidean_recall | 0.9762 |
318
+ | euclidean_ap | 0.9721 |
319
+ | max_accuracy | 0.9286 |
320
+ | max_accuracy_threshold | 16.6308 |
321
+ | max_f1 | 0.9432 |
322
+ | max_f1_threshold | 19.7401 |
323
+ | max_precision | 0.9111 |
324
+ | max_recall | 0.9881 |
325
+ | **max_ap** | **0.9728** |
326
 
327
  <!--
328
  ## Bias, Risks and Limitations
 
356
  | <code>When it was dinner</code> | <code>Dinner time</code> | <code>1</code> |
357
  | <code>Did you cook chicken noodle last night?</code> | <code>Did you make chicken noodle for dinner?</code> | <code>1</code> |
358
  | <code>Someone who can change item</code> | <code>Someone who uses magic that turns something into something. </code> | <code>1</code> |
359
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
360
  ```json
361
  {
362
  "scale": 20.0,
363
+ "similarity_fct": "pairwise_cos_sim"
364
  }
365
  ```
366
 
 
382
  | <code>Let's check inside</code> | <code>Let's search inside</code> | <code>1</code> |
383
  | <code>Sohpie, are you okay?</code> | <code>Sophie Are you pressured?</code> | <code>0</code> |
384
  | <code>This wine glass is related.</code> | <code>This sword looks important.</code> | <code>0</code> |
385
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
386
  ```json
387
  {
388
  "scale": 20.0,
389
+ "similarity_fct": "pairwise_cos_sim"
390
  }
391
  ```
392
 
 
521
  | Epoch | Step | Training Loss | loss | custom-arc-semantics-data_max_ap |
522
  |:-----:|:----:|:-------------:|:------:|:--------------------------------:|
523
  | None | 0 | - | - | 0.9254 |
524
+ | 1.0 | 70 | 2.9684 | 1.4087 | 0.9425 |
525
+ | 2.0 | 140 | 1.4461 | 1.0942 | 0.9629 |
526
+ | 3.0 | 210 | 0.6005 | 0.8398 | 0.9680 |
527
+ | 4.0 | 280 | 0.3021 | 0.7577 | 0.9703 |
528
+ | 5.0 | 350 | 0.2412 | 0.7216 | 0.9715 |
529
+ | 6.0 | 420 | 0.1816 | 0.7538 | 0.9722 |
530
+ | 7.0 | 490 | 0.1512 | 0.8049 | 0.9726 |
531
+ | 8.0 | 560 | 0.1208 | 0.7602 | 0.9726 |
532
+ | 9.0 | 630 | 0.0915 | 0.7286 | 0.9729 |
533
+ | 10.0 | 700 | 0.0553 | 0.7072 | 0.9729 |
534
+ | 11.0 | 770 | 0.0716 | 0.6984 | 0.9730 |
535
+ | 12.0 | 840 | 0.0297 | 0.7063 | 0.9725 |
536
+ | 13.0 | 910 | 0.0462 | 0.6997 | 0.9728 |
537
 
538
 
539
  ### Framework Versions
 
562
  }
563
  ```
564
 
565
+ #### CoSENTLoss
566
  ```bibtex
567
+ @online{kexuefm-8847,
568
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
569
+ author={Su Jianlin},
570
+ year={2022},
571
+ month={Jan},
572
+ url={https://kexue.fm/archives/8847},
 
573
  }
574
  ```
575
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f724ea45fc6e76f2fe28ae0d75a450d3e7365c6fb93d8edd41724b13cde80da5
3
  size 90864192
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d9ab6b7472780e4b9271e02f535d125c33cef1b145ab2f8d3135ed97c72aea5
3
  size 90864192