File size: 2,086 Bytes
ef0bc4e
 
cfa197f
 
 
 
 
 
 
 
 
ef0bc4e
cfa197f
 
 
 
 
 
 
 
 
ef0bc4e
cfa197f
 
ef0bc4e
cfa197f
ef0bc4e
cfa197f
 
ef0bc4e
cfa197f
ef0bc4e
cfa197f
 
 
ef0bc4e
cfa197f
ef0bc4e
cfa197f
 
 
 
 
ef0bc4e
cfa197f
ef0bc4e
cfa197f
 
 
 
ef0bc4e
cfa197f
 
ef0bc4e
cfa197f
 
 
ef0bc4e
cfa197f
 
ef0bc4e
cfa197f
ef0bc4e
cfa197f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
library_name: transformers
base_model:
- meta-llama/Llama-3.2-1B-Instruct
license: llama3.2
language:
- en
- it
tags:
- translation
- text-generation
---
# LlaMaestra - A tiny Llama model tuned for text translation
```html
 _     _      ___  ___                _             
| |   | |     |  \/  |               | |            
| |   | | __ _| .  . | __ _  ___  ___| |_ _ __ __ _ 
| |   | |/ _` | |\/| |/ _` |/ _ \/ __| __| '__/ _` |
| |___| | (_| | |  | | (_| |  __/\__ \ |_| | | (_| |
\_____/_|\__,_\_|  |_/\__,_|\___||___/\__|_|  \__,_|
```

## Model Card 
This model was finetuned with roughly 300.000 examples of translations from English to Italian and Italian to English. The model was finetuned in a way to more directly provide a translation without much explanation.

Finetuning took about 10 hours on an A10G Nvidia GPU.

Due to its size, the model runs very well on CPUs. 
![A very italian Llama model](llamaestro-sm-bg.png)

## Usage 

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "LeonardPuettmann/LlaMaestra-3.2-1B-Instruct-v0.1"

model = AutoModelForCausalLM.from_pretrained(
    model_id, 
    device_map="auto",
    trust_remote_code=True,
)

tokenizer = AutoTokenizer.from_pretrained(model_id, add_bos_token=True, trust_remote_code=True)

row_json = [
    {"role": "system", "content": "Your job is to return translations for sentences or words from either Italian to English or English to Italian."},
    {"role": "user", "content": "Do you sell tickets for the bus?"},
]

prompt =  tokenizer.apply_chat_template(row_json, tokenize=False)
model_input = tokenizer(prompt, return_tensors="pt").to("cuda")

with torch.no_grad():
    print(tokenizer.decode(model.generate(**model_input, max_new_tokens=1024)[0]))
```

## Data used 
The source for the data were sentence pairs from tatoeba.com. The data can be downloaded from here: https://tatoeba.org/downloads

## Credits

Base model: `meta-llama/Llama-3.2-1B-Instruct`
Finetuned by: Leonard Püttmann https://www.linkedin.com/in/leonard-p%C3%BCttmann-4648231a9/