End of training
Browse files- README.md +102 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: ntu-spml/distilhubert
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- marsyas/gtzan
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
model-index:
|
14 |
+
- name: distilhubert-finetuned-gtzan
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Audio Classification
|
18 |
+
type: audio-classification
|
19 |
+
dataset:
|
20 |
+
name: GTZAN
|
21 |
+
type: marsyas/gtzan
|
22 |
+
config: all
|
23 |
+
split: train
|
24 |
+
args: all
|
25 |
+
metrics:
|
26 |
+
- name: Accuracy
|
27 |
+
type: accuracy
|
28 |
+
value: 0.7733333333333333
|
29 |
+
- name: Precision
|
30 |
+
type: precision
|
31 |
+
value: 0.775454513809777
|
32 |
+
- name: Recall
|
33 |
+
type: recall
|
34 |
+
value: 0.7733333333333333
|
35 |
+
- name: F1
|
36 |
+
type: f1
|
37 |
+
value: 0.7708532203254443
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/raspuntinov_ai/huggingface/runs/xti2wn9w)
|
44 |
+
# distilhubert-finetuned-gtzan
|
45 |
+
|
46 |
+
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
47 |
+
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.7448
|
49 |
+
- Accuracy: 0.7733
|
50 |
+
- Precision: 0.7755
|
51 |
+
- Recall: 0.7733
|
52 |
+
- F1: 0.7709
|
53 |
+
|
54 |
+
## Model description
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Intended uses & limitations
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training and evaluation data
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training procedure
|
67 |
+
|
68 |
+
### Training hyperparameters
|
69 |
+
|
70 |
+
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 5e-05
|
72 |
+
- train_batch_size: 8
|
73 |
+
- eval_batch_size: 8
|
74 |
+
- seed: 42
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- lr_scheduler_warmup_ratio: 0.1
|
78 |
+
- num_epochs: 10
|
79 |
+
- mixed_precision_training: Native AMP
|
80 |
+
|
81 |
+
### Training results
|
82 |
+
|
83 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
84 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
85 |
+
| 2.0182 | 1.0 | 88 | 2.0020 | 0.3333 | 0.3990 | 0.3333 | 0.2547 |
|
86 |
+
| 1.6019 | 2.0 | 176 | 1.4794 | 0.5333 | 0.6597 | 0.5333 | 0.4789 |
|
87 |
+
| 1.0733 | 3.0 | 264 | 1.2329 | 0.6133 | 0.6930 | 0.6133 | 0.5993 |
|
88 |
+
| 0.9451 | 4.0 | 352 | 1.1227 | 0.64 | 0.7214 | 0.64 | 0.6289 |
|
89 |
+
| 0.9232 | 5.0 | 440 | 0.9426 | 0.7133 | 0.7398 | 0.7133 | 0.7071 |
|
90 |
+
| 0.6552 | 6.0 | 528 | 0.8132 | 0.78 | 0.7795 | 0.78 | 0.7768 |
|
91 |
+
| 0.4019 | 7.0 | 616 | 0.8478 | 0.7333 | 0.7428 | 0.7333 | 0.7285 |
|
92 |
+
| 0.2836 | 8.0 | 704 | 0.7369 | 0.7933 | 0.8025 | 0.7933 | 0.7915 |
|
93 |
+
| 0.207 | 9.0 | 792 | 0.7440 | 0.7933 | 0.7926 | 0.7933 | 0.7879 |
|
94 |
+
| 0.3091 | 10.0 | 880 | 0.7448 | 0.7733 | 0.7755 | 0.7733 | 0.7709 |
|
95 |
+
|
96 |
+
|
97 |
+
### Framework versions
|
98 |
+
|
99 |
+
- Transformers 4.42.3
|
100 |
+
- Pytorch 2.1.2
|
101 |
+
- Datasets 2.20.0
|
102 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94771728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e396a5537e4a72663e4e7ce9975551567404c2ac974af34ba5927c8b15104447
|
3 |
size 94771728
|