--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy - precision - recall - f1 model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.7733333333333333 - name: Precision type: precision value: 0.775454513809777 - name: Recall type: recall value: 0.7733333333333333 - name: F1 type: f1 value: 0.7708532203254443 --- [Visualize in Weights & Biases](https://wandb.ai/raspuntinov_ai/huggingface/runs/xti2wn9w) # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7448 - Accuracy: 0.7733 - Precision: 0.7755 - Recall: 0.7733 - F1: 0.7709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 2.0182 | 1.0 | 88 | 2.0020 | 0.3333 | 0.3990 | 0.3333 | 0.2547 | | 1.6019 | 2.0 | 176 | 1.4794 | 0.5333 | 0.6597 | 0.5333 | 0.4789 | | 1.0733 | 3.0 | 264 | 1.2329 | 0.6133 | 0.6930 | 0.6133 | 0.5993 | | 0.9451 | 4.0 | 352 | 1.1227 | 0.64 | 0.7214 | 0.64 | 0.6289 | | 0.9232 | 5.0 | 440 | 0.9426 | 0.7133 | 0.7398 | 0.7133 | 0.7071 | | 0.6552 | 6.0 | 528 | 0.8132 | 0.78 | 0.7795 | 0.78 | 0.7768 | | 0.4019 | 7.0 | 616 | 0.8478 | 0.7333 | 0.7428 | 0.7333 | 0.7285 | | 0.2836 | 8.0 | 704 | 0.7369 | 0.7933 | 0.8025 | 0.7933 | 0.7915 | | 0.207 | 9.0 | 792 | 0.7440 | 0.7933 | 0.7926 | 0.7933 | 0.7879 | | 0.3091 | 10.0 | 880 | 0.7448 | 0.7733 | 0.7755 | 0.7733 | 0.7709 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1