--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy - precision - recall - f1 model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 - name: Precision type: precision value: 0.8753213453213452 - name: Recall type: recall value: 0.87 - name: F1 type: f1 value: 0.8641214483158217 pipeline_tag: audio-classification --- [Visualize in Weights & Biases](https://wandb.ai/raspuntinov_ai/huggingface/runs/cefsu57q) # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5488 - Accuracy: 0.87 - Precision: 0.8753 - Recall: 0.87 - F1: 0.8641 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 2.1729 | 1.0 | 113 | 2.0581 | 0.63 | 0.6670 | 0.63 | 0.5957 | | 1.6552 | 2.0 | 226 | 1.3957 | 0.7 | 0.6894 | 0.7 | 0.6857 | | 1.0753 | 3.0 | 339 | 0.9783 | 0.75 | 0.8154 | 0.75 | 0.7277 | | 0.8519 | 4.0 | 452 | 0.8087 | 0.75 | 0.8120 | 0.75 | 0.7380 | | 0.8623 | 5.0 | 565 | 0.7393 | 0.75 | 0.7622 | 0.75 | 0.7373 | | 0.506 | 6.0 | 678 | 0.6861 | 0.81 | 0.8449 | 0.81 | 0.7997 | | 0.2052 | 7.0 | 791 | 0.6505 | 0.81 | 0.8254 | 0.81 | 0.8024 | | 0.1583 | 8.0 | 904 | 0.5365 | 0.86 | 0.8770 | 0.86 | 0.8545 | | 0.0699 | 9.0 | 1017 | 0.5488 | 0.87 | 0.8753 | 0.87 | 0.8641 | | 0.0177 | 10.0 | 1130 | 0.6330 | 0.83 | 0.8312 | 0.83 | 0.8245 | | 0.0071 | 11.0 | 1243 | 0.6268 | 0.84 | 0.8410 | 0.84 | 0.8348 | | 0.0746 | 12.0 | 1356 | 0.6051 | 0.87 | 0.8732 | 0.87 | 0.8675 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1