diff --git "a/_SpydazWebAI_Mistral_Transformer_.py" "b/_SpydazWebAI_Mistral_Transformer_.py"
new file mode 100644--- /dev/null
+++ "b/_SpydazWebAI_Mistral_Transformer_.py"
@@ -0,0 +1,6934 @@
+# SpydazWeb AI MistralStar
+################################ Introduction ##############################
+
+# SpydazWeb AI Mistral Transformer ! this is a model based off of the mistral and mixtral models :
+# it is created t eneble the model to generate thoughts before generating response:
+# This is the first Generation of research;
+# this paradigm will be improved: -
+
+## Note: to: Self:
+# the model should generate a thought based of the thought prompt , then it should use its thought generation to pass to the model input :
+# with the original input : ( cross attention ) -
+# this should enhance the input to the model also providing extra content for the generation stage:
+# ( later work ) - these thought should be generated by multiple heads :
+# as perhaps internal agents/Experts hence for each head it would need head prompt :perhaps this should be a hardcoded process?
+# problem is how to frame it in the config ? -
+# then each head could generate content and the final head suamarize the content with the input to provide a rich query?
+# in fact a single prompt is fine to hold multiple thoughts perhaps ,
+# as this will be stacked on top of the input ? to the hidden context size may need to be larger than the model size?
+# PROJECT: ENDNING ?
+# we need to have the extra processor in the tokenizer or the model ( perhaps the tokenizer is the best place for input management ,
+# so to add the audio spectograph encoder and the Vision caption Trnsformer ,
+# so given a image or a sound it will provuide the outputs for each item prompt ,
+# hence the tokenizer response will need to be message based : ie seperate image description , seperate text ,
+# seperate audio description( not Speech as this shoudl be an other rag front end? or pre processor to the tokenizer ,
+# for speech input it will handled in another model as that will be encoder/decoder ! this model is a decoder model and
+# the tokenizer / preprocessors are the encoder layers ~!))
+
+
+
+
+
+################################ Imports ##############################
+import inspect
+import math
+import copy
+import os
+import time
+import pandas as pd
+import seaborn as sns
+import matplotlib.pyplot as plt
+
+from termcolor import colored
+from tqdm import tqdm
+import random
+import numpy as np
+from matplotlib.colors import LinearSegmentedColormap, LogNorm
+import warnings
+from collections import defaultdict
+from typing import List, Optional, Tuple, Union
+
+
+from typing import List, Optional, Tuple, Union
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+import torch.nn.functional as F
+from transformers.configuration_utils import PretrainedConfig
+from transformers.utils import logging,add_start_docstrings,add_start_docstrings_to_model_forward,replace_return_docstrings
+from transformers.modeling_utils import PreTrainedModel
+from transformers.cache_utils import Cache,DynamicCache, SlidingWindowCache, StaticCache
+from transformers.activations import ACT2FN
+from transformers.modeling_attn_mask_utils import AttentionMaskConverter
+from transformers.modeling_outputs import BaseModelOutputWithPast,CausalLMOutputWithPast,SequenceClassifierOutputWithPast,TokenClassifierOutput,QuestionAnsweringModelOutput,MoeCausalLMOutputWithPast,MoeModelOutputWithPast
+from tokenizers import processors
+from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
+from transformers.utils import is_sentencepiece_available, logging
+from transformers.utils.versions import require_version
+from shutil import copyfile
+from collections import defaultdict
+from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
+import sentencepiece as spm
+from transformers.convert_slow_tokenizer import import_protobuf
+from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
+from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
+from transformers.utils import logging
+from transformers.utils import (
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_flash_attn_2_available,
+ is_flash_attn_greater_or_equal_2_10,
+ logging,
+ replace_return_docstrings,
+)
+if TYPE_CHECKING:
+ from transformers.tokenization_utils_base import TextInput
+if is_flash_attn_2_available():
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
+
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
+
+MISTRAL_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
+ `past_key_values`).
+
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
+ information on the default strategy.
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.n_positions - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
+
+ Two formats are allowed:
+ - a [`~cache_utils.Cache`] instance;
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
+ cache format.
+
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
+ legacy cache format will be returned.
+
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
+ of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ "mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json",
+ "mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json",
+}
+MISTRAL_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`MistralConfig`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+_CONFIG_FOR_DOC = "MistralStarConfig"
+logger = logging.get_logger(__name__)
+SPIECE_UNDERLINE = "▁"
+require_version("tokenizers>=0.13.3")
+VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"}
+
+B_INST, E_INST = "[INST]", "[/INST]"
+B_SYS, E_SYS = "<>\n", "\n<>\n\n"
+
+# fmt: off
+DEFAULT_SYSTEM_PROMPT = """you are the world archive of knowledge and a friendly helpful artificial intelligent being:
+consider if the current task denotes the creation of a function in python that can be saved and re-used for a future task,
+if created, return the artifact to the user, in the response, or if access is given to be save as a file on the user system:
+Be flirtatious and joyfull, always willing to help or engage in conversation or express an opinion or sentiment:
+answer all questions indepth supply and helpfull references where possible; """
+# fmt: on
+
+############################## Models #################################
+class MixtralConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`MixtralModel`]. It is used to instantiate an
+ Mixtral model according to the specified arguments, defining the model architecture. Instantiating a configuration
+ with the defaults will yield a similar configuration to that of the Mixtral-7B-v0.1 or Mixtral-7B-Instruct-v0.1.
+
+ [mixtralai/Mixtral-8x7B](https://huggingface.co/mixtralai/Mixtral-8x7B)
+ [mixtralai/Mixtral-7B-Instruct-v0.1](https://huggingface.co/mixtralai/Mixtral-7B-Instruct-v0.1)
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 32000):
+ Vocabulary size of the Mixtral model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`MixtralModel`]
+ hidden_size (`int`, *optional*, defaults to 4096):
+ Dimension of the hidden representations.
+ intermediate_size (`int`, *optional*, defaults to 14336):
+ Dimension of the MLP representations.
+ num_hidden_layers (`int`, *optional*, defaults to 32):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 32):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ num_key_value_heads (`int`, *optional*, defaults to 8):
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
+ by meanpooling all the original heads within that group. For more details checkout [this
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
+ The non-linear activation function (function or string) in the decoder.
+ max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
+ The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
+ allows sequence of up to 4096*32 tokens.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
+ The epsilon used by the rms normalization layers.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ pad_token_id (`int`, *optional*):
+ The id of the padding token.
+ bos_token_id (`int`, *optional*, defaults to 1):
+ The id of the "beginning-of-sequence" token.
+ eos_token_id (`int`, *optional*, defaults to 2):
+ The id of the "end-of-sequence" token.
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
+ Whether the model's input and output word embeddings should be tied.
+ rope_theta (`float`, *optional*, defaults to 1000000.0):
+ The base period of the RoPE embeddings.
+ sliding_window (`int`, *optional*):
+ Sliding window attention window size. If not specified, will default to `4096`.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ num_experts_per_tok (`int`, *optional*, defaults to 2):
+ The number of experts to route per-token, can be also interpreted as the `top-k` routing
+ parameter
+ num_local_experts (`int`, *optional*, defaults to 8):
+ Number of experts per Sparse MLP layer.
+ output_router_logits (`bool`, *optional*, defaults to `False`):
+ Whether or not the router logits should be returned by the model. Enabeling this will also
+ allow the model to output the auxiliary loss. See [here]() for more details
+ router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
+ The aux loss factor for the total loss.
+ router_jitter_noise (`float`, *optional*, defaults to 0.0):
+ Amount of noise to add to the router.
+
+ ```python
+ >>> from transformers import MixtralModel, MixtralConfig
+
+ >>> # Initializing a Mixtral 7B style configuration
+ >>> configuration = MixtralConfig()
+
+ >>> # Initializing a model from the Mixtral 7B style configuration
+ >>> model = MixtralModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "mixtral"
+ keys_to_ignore_at_inference = ["past_key_values"]
+
+ def __init__(
+ self,
+ vocab_size=32000,
+ hidden_size=4096,
+ intermediate_size=14336,
+ num_hidden_layers=32,
+ num_attention_heads=32,
+ num_key_value_heads=8,
+ hidden_act="silu",
+ max_position_embeddings=4096 * 32,
+ initializer_range=0.02,
+ rms_norm_eps=1e-5,
+ use_cache=True,
+ pad_token_id=None,
+ bos_token_id=1,
+ eos_token_id=2,
+ tie_word_embeddings=False,
+ rope_theta=1e6,
+ sliding_window=None,
+ attention_dropout=0.0,
+ num_experts_per_tok=2,
+ num_local_experts=8,
+ output_router_logits=False,
+ router_aux_loss_coef=0.001,
+ router_jitter_noise=0.0,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.hidden_size = hidden_size
+ self.intermediate_size = intermediate_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.sliding_window = sliding_window
+
+ # for backward compatibility
+ if num_key_value_heads is None:
+ num_key_value_heads = num_attention_heads
+
+ self.num_key_value_heads = num_key_value_heads
+ self.hidden_act = hidden_act
+ self.initializer_range = initializer_range
+ self.rms_norm_eps = rms_norm_eps
+ self.use_cache = use_cache
+ self.rope_theta = rope_theta
+ self.attention_dropout = attention_dropout
+
+ self.num_experts_per_tok = num_experts_per_tok
+ self.num_local_experts = num_local_experts
+ self.output_router_logits = output_router_logits
+ self.router_aux_loss_coef = router_aux_loss_coef
+ self.router_jitter_noise = router_jitter_noise
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ tie_word_embeddings=tie_word_embeddings,
+ **kwargs,
+ )
+
+class MistralStarConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
+ Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
+ with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
+
+ [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
+ [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 32000):
+ Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`MistralModel`]
+ hidden_size (`int`, *optional*, defaults to 4096):
+ Dimension of the hidden representations.
+ intermediate_size (`int`, *optional*, defaults to 14336):
+ Dimension of the MLP representations.
+ num_hidden_layers (`int`, *optional*, defaults to 32):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 32):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ num_key_value_heads (`int`, *optional*, defaults to 8):
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
+ by meanpooling all the original heads within that group. For more details checkout [this
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
+ The non-linear activation function (function or string) in the decoder.
+ max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
+ The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
+ allows sequence of up to 4096*32 tokens.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
+ The epsilon used by the rms normalization layers.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ pad_token_id (`int`, *optional*):
+ The id of the padding token.
+ bos_token_id (`int`, *optional*, defaults to 1):
+ The id of the "beginning-of-sequence" token.
+ eos_token_id (`int`, *optional*, defaults to 2):
+ The id of the "end-of-sequence" token.
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
+ Whether the model's input and output word embeddings should be tied.
+ rope_theta (`float`, *optional*, defaults to 10000.0):
+ The base period of the RoPE embeddings.
+ sliding_window (`int`, *optional*, defaults to 4096):
+ Sliding window attention window size. If not specified, will default to `4096`.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+
+ ```python
+ >>> from transformers import MistralModel, MistralConfig
+
+ >>> # Initializing a Mistral 7B style configuration
+ >>> configuration = MistralConfig()
+
+ >>> # Initializing a model from the Mistral 7B style configuration
+ >>> model = MistralModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "mistralstar"
+ keys_to_ignore_at_inference = ["past_key_values"]
+
+ def __init__(
+ self,
+ vocab_size=32000,
+ hidden_size=4096,
+ intermediate_size=14336,
+ num_hidden_layers=32,
+ num_attention_heads=32,
+ num_key_value_heads=8,
+ hidden_act="silu",
+ max_position_embeddings=4096 * 32,
+ initializer_range=0.02,
+ rms_norm_eps=1e-6,
+ use_cache=True,
+ pad_token_id=None,
+ bos_token_id=1,
+ eos_token_id=2,
+ tie_word_embeddings=False,
+ rope_theta=10000.0,
+ sliding_window=4096,
+ attention_dropout=0.0,
+ max_thoughts=16,
+ thought_length = 10,
+ merged_talk_heads=True,
+ merged_lm_and_talk_heads=False,
+ merged_lm_and_think_heads=True,
+ use_concat_talk_head=True,
+ use_shallow_think=True,
+ use_shallow_talk=False,
+ use_complex_think_head=False,
+ use_complex_talk_head=True,
+ use_weighted_talk_head=True,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.hidden_size = hidden_size
+ self.intermediate_size = intermediate_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.sliding_window = sliding_window
+
+ # for backward compatibility
+ if num_key_value_heads is None:
+ num_key_value_heads = num_attention_heads
+
+ self.num_key_value_heads = num_key_value_heads
+ self.hidden_act = hidden_act
+ self.initializer_range = initializer_range
+ self.rms_norm_eps = rms_norm_eps
+ self.use_cache = use_cache
+ self.rope_theta = rope_theta
+ self.attention_dropout = attention_dropout
+ self.max_thoughts = max_thoughts
+ self.thought_length = thought_length
+ self.merged_talk_heads = merged_talk_heads
+ self.merged_lm_and_talk_heads = merged_lm_and_talk_heads
+ self.merged_lm_and_think_heads = merged_lm_and_think_heads
+ self.use_concat_talk_head = use_concat_talk_head
+ self.use_shallow_think = use_shallow_think
+ self.use_shallow_talk = use_shallow_talk
+ self.use_complex_think_head = use_complex_think_head
+ self.use_complex_talk_head = use_complex_talk_head
+ self.use_weighted_talk_head = use_weighted_talk_head
+
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ tie_word_embeddings=tie_word_embeddings,
+ **kwargs,
+ )
+
+class MistralConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
+ Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
+ with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
+
+ [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
+ [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 32000):
+ Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`MistralModel`]
+ hidden_size (`int`, *optional*, defaults to 4096):
+ Dimension of the hidden representations.
+ intermediate_size (`int`, *optional*, defaults to 14336):
+ Dimension of the MLP representations.
+ num_hidden_layers (`int`, *optional*, defaults to 32):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 32):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ num_key_value_heads (`int`, *optional*, defaults to 8):
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
+ by meanpooling all the original heads within that group. For more details checkout [this
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
+ The non-linear activation function (function or string) in the decoder.
+ max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
+ The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
+ allows sequence of up to 4096*32 tokens.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
+ The epsilon used by the rms normalization layers.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ pad_token_id (`int`, *optional*):
+ The id of the padding token.
+ bos_token_id (`int`, *optional*, defaults to 1):
+ The id of the "beginning-of-sequence" token.
+ eos_token_id (`int`, *optional*, defaults to 2):
+ The id of the "end-of-sequence" token.
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
+ Whether the model's input and output word embeddings should be tied.
+ rope_theta (`float`, *optional*, defaults to 10000.0):
+ The base period of the RoPE embeddings.
+ sliding_window (`int`, *optional*, defaults to 4096):
+ Sliding window attention window size. If not specified, will default to `4096`.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+
+ ```python
+ >>> from transformers import MistralModel, MistralConfig
+
+ >>> # Initializing a Mistral 7B style configuration
+ >>> configuration = MistralConfig()
+
+ >>> # Initializing a model from the Mistral 7B style configuration
+ >>> model = MistralModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "mistral"
+ keys_to_ignore_at_inference = ["past_key_values"]
+
+ def __init__(
+ self,
+ vocab_size=32000,
+ hidden_size=4096,
+ intermediate_size=14336,
+ num_hidden_layers=32,
+ num_attention_heads=32,
+ num_key_value_heads=8,
+ hidden_act="silu",
+ max_position_embeddings=4096 * 32,
+ initializer_range=0.02,
+ rms_norm_eps=1e-6,
+ use_cache=True,
+ pad_token_id=None,
+ bos_token_id=1,
+ eos_token_id=2,
+ tie_word_embeddings=False,
+ rope_theta=10000.0,
+ sliding_window=4096,
+ attention_dropout=0.0,
+ max_thoughts=16,
+ merged_talk_heads=True,
+ merged_lm_and_talk_heads=False,
+ merged_lm_and_think_heads=True,
+ use_concat_talk_head=True,
+ use_shallow_think=True,
+ use_shallow_talk=False,
+ use_complex_think_head=False,
+ use_complex_talk_head=True,
+ use_weighted_talk_head=True,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.hidden_size = hidden_size
+ self.intermediate_size = intermediate_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.sliding_window = sliding_window
+
+ # for backward compatibility
+ if num_key_value_heads is None:
+ num_key_value_heads = num_attention_heads
+
+ self.num_key_value_heads = num_key_value_heads
+ self.hidden_act = hidden_act
+ self.initializer_range = initializer_range
+ self.rms_norm_eps = rms_norm_eps
+ self.use_cache = use_cache
+ self.rope_theta = rope_theta
+ self.attention_dropout = attention_dropout
+ self.max_thoughts = max_thoughts
+ self.merged_talk_heads = merged_talk_heads
+ self.merged_lm_and_talk_heads = merged_lm_and_talk_heads
+ self.merged_lm_and_think_heads = merged_lm_and_think_heads
+ self.use_concat_talk_head = use_concat_talk_head
+ self.use_shallow_think = use_shallow_think
+ self.use_shallow_talk = use_shallow_talk
+ self.use_complex_think_head = use_complex_think_head
+ self.use_complex_talk_head = use_complex_talk_head
+ self.use_weighted_talk_head = use_weighted_talk_head
+
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ tie_word_embeddings=tie_word_embeddings,
+ **kwargs,
+ )
+
+
+@add_start_docstrings(
+ "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
+ MISTRAL_START_DOCSTRING,
+)
+class MistralPreTrainedModel(PreTrainedModel):
+ config_class = MistralConfig
+ base_model_prefix = "model"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["MistralDecoderLayer"]
+ _skip_keys_device_placement = "past_key_values"
+ _supports_flash_attn_2 = True
+ _supports_sdpa = True
+ _supports_cache_class = True
+ _supports_static_cache = True
+
+ def _init_weights(self, module):
+ std = self.config.initializer_range
+ if isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+
+@add_start_docstrings(
+ "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
+ MISTRAL_START_DOCSTRING,
+)
+class MistralModel(MistralPreTrainedModel):
+ """
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
+
+ Args:
+ config: MistralConfig
+ """
+
+ def __init__(self, config: MistralConfig):
+ super().__init__(config)
+ self.padding_idx = config.pad_token_id
+ self.vocab_size = config.vocab_size
+
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
+ self.layers = nn.ModuleList(
+ [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
+ )
+ self._attn_implementation = config._attn_implementation
+ self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.embed_tokens = value
+
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # retrieve input_ids and inputs_embeds
+ if (input_ids is None) ^ (inputs_embeds is not None):
+ raise ValueError(
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
+ )
+
+ if self.gradient_checkpointing and self.training and use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids)
+
+ return_legacy_cache = False
+ if use_cache and not isinstance(past_key_values, Cache):
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
+ return_legacy_cache = True
+ logger.warning_once(
+ "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
+ "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
+ )
+
+ if cache_position is None:
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
+ cache_position = torch.arange(
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
+ )
+
+ if position_ids is None:
+ position_ids = cache_position.unsqueeze(0)
+
+ causal_mask = self._update_causal_mask(
+ attention_mask, inputs_embeds, cache_position, past_key_values, use_cache, output_attentions
+ )
+
+ hidden_states = inputs_embeds
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ next_decoder_cache = None
+
+ for decoder_layer in self.layers:
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ decoder_layer.__call__,
+ hidden_states,
+ causal_mask,
+ position_ids,
+ past_key_values,
+ output_attentions,
+ use_cache,
+ cache_position,
+ )
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=causal_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_values,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ cache_position=cache_position,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if use_cache:
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
+
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ hidden_states = self.norm(hidden_states)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ next_cache = next_decoder_cache if use_cache else None
+ if return_legacy_cache:
+ next_cache = next_cache.to_legacy_cache()
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
+ return BaseModelOutputWithPast(
+ last_hidden_state=hidden_states,
+ past_key_values=next_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ )
+
+ def _update_causal_mask(
+ self,
+ attention_mask: torch.Tensor,
+ input_tensor: torch.Tensor,
+ cache_position: torch.Tensor,
+ past_key_values: Cache,
+ use_cache: bool,
+ output_attentions: bool,
+ ):
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
+
+ if self._attn_implementation == "flash_attention_2":
+ if attention_mask is not None and use_cache:
+ is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
+ if is_padding_right:
+ raise ValueError(
+ "You are attempting to perform batched generation with padding_side='right'"
+ " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
+ )
+ if attention_mask is not None and 0.0 in attention_mask:
+ return attention_mask
+ return None
+
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
+ # to infer the attention mask.
+
+ # cache_position must be valid here no matter which cache we use
+ past_seen_tokens = cache_position[0] if past_key_values is not None else 0
+ using_static_cache = isinstance(past_key_values, StaticCache)
+ using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
+
+ if (
+ self.config._attn_implementation == "sdpa"
+ and not (using_static_cache or using_sliding_window_cache)
+ and not output_attentions
+ ):
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
+ attention_mask,
+ inputs_embeds=input_tensor,
+ past_key_values_length=past_seen_tokens,
+ sliding_window=self.config.sliding_window,
+ is_training=self.training,
+ ):
+ return None
+
+ dtype, device = input_tensor.dtype, input_tensor.device
+ min_dtype = torch.finfo(dtype).min
+ sequence_length = input_tensor.shape[1]
+ # SlidingWindowCache
+ if using_sliding_window_cache:
+ target_length = max(sequence_length, self.config.sliding_window)
+ # StaticCache
+ elif using_static_cache:
+ target_length = past_key_values.get_max_length()
+ # DynamicCache or no cache
+ else:
+ target_length = (
+ attention_mask.shape[-1]
+ if isinstance(attention_mask, torch.Tensor)
+ else past_seen_tokens + sequence_length + 1
+ )
+
+ if attention_mask is not None and attention_mask.dim() == 4:
+ # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
+ if attention_mask.max() != 0:
+ raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
+ causal_mask = attention_mask
+ else:
+ causal_mask = torch.full(
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
+ )
+ exclude_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
+ if self.config.sliding_window is not None:
+ if not using_sliding_window_cache or sequence_length > self.config.sliding_window:
+ exclude_mask.bitwise_or_(
+ torch.arange(target_length, device=device)
+ <= (cache_position.reshape(-1, 1) - self.config.sliding_window)
+ )
+ causal_mask *= exclude_mask
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
+ if attention_mask is not None:
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
+ if attention_mask.dim() == 2:
+ mask_length = attention_mask.shape[-1]
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
+ padding_mask = padding_mask == 0
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
+ padding_mask, min_dtype
+ )
+
+ if (
+ self.config._attn_implementation == "sdpa"
+ and attention_mask is not None
+ and attention_mask.device.type == "cuda"
+ and not output_attentions
+ ):
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
+ # Details: https://github.com/pytorch/pytorch/issues/110213
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
+
+ return causal_mask
+
+
+############################## LM Heads #################################
+
+
+
+
+
+
+################################ Tokenizer ##############################
+class MistralTokenizer(PreTrainedTokenizer):
+ """
+ Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
+ no padding token in the original model.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+ eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""`):
+ The end of sequence token.
+ pad_token (`str` or `tokenizers.AddedToken`, *optional*):
+ A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
+ attention mechanisms or loss computation.
+ sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
+ to set:
+
+ - `enable_sampling`: Enable subword regularization.
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
+
+ - `nbest_size = {0,1}`: No sampling is performed.
+ - `nbest_size > 1`: samples from the nbest_size results.
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
+ using forward-filtering-and-backward-sampling algorithm.
+
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
+ BPE-dropout.
+
+ add_bos_token (`bool`, *optional*, defaults to `True`):
+ Whether or not to add an `bos_token` at the start of sequences.
+ add_eos_token (`bool`, *optional*, defaults to `False`):
+ Whether or not to add an `eos_token` at the end of sequences.
+ clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
+ Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
+ extra spaces.
+ use_default_system_prompt (`bool`, *optional*, defaults to `False`):
+ Whether or not the default system prompt for Llama should be used.
+ spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not to add spaces between special tokens.
+ legacy (`bool`, *optional*):
+ Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622
+ and #25224 which includes fixes to properly handle tokens that appear after special tokens.
+ Make sure to also set `from_slow` to `True`.
+ A simple example:
+
+ - `legacy=True`:
+ ```python
+ >>> from transformers import LlamaTokenizerFast
+
+ >>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=True, from_slow=True)
+ >>> tokenizer.encode("Hello .") # 869 is '▁.'
+ [1, 15043, 29871, 1, 869]
+ ```
+ - `legacy=False`:
+ ```python
+ >>> from transformers import LlamaTokenizerFast
+
+ >>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=False, from_slow=True)
+ >>> tokenizer.encode("Hello .") # 29889 is '.'
+ [1, 15043, 29871, 1, 29889]
+ ```
+ Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details.
+ add_prefix_space (`bool`, *optional*, defaults to `True`):
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
+ other word. Again, this should be set with `from_slow=True` to make sure it's taken into account.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file,
+ unk_token="",
+ bos_token="",
+ eos_token="",
+ pad_token=None,
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ add_bos_token=True,
+ add_eos_token=False,
+ clean_up_tokenization_spaces=False,
+ use_default_system_prompt=False,
+ spaces_between_special_tokens=False,
+ legacy=None,
+ add_prefix_space=True,
+ **kwargs,
+ ):
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+ bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
+ eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
+ unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
+ pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
+
+ if legacy is None:
+ logger.warning_once(
+ f"You are using the default legacy behaviour of the {self.__class__}. This is"
+ " expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you."
+ " If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it"
+ " means, and thoroughly read the reason why this was added as explained in"
+ " https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file"
+ " you can ignore this message"
+ )
+ legacy = True
+
+ self.legacy = legacy
+ self.vocab_file = vocab_file
+ self.add_bos_token = add_bos_token
+ self.add_eos_token = add_eos_token
+ self.use_default_system_prompt = use_default_system_prompt
+ self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
+ self.add_prefix_space = add_prefix_space
+
+ super().__init__(
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ pad_token=pad_token,
+ add_bos_token=add_bos_token,
+ add_eos_token=add_eos_token,
+ sp_model_kwargs=self.sp_model_kwargs,
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
+ use_default_system_prompt=use_default_system_prompt,
+ spaces_between_special_tokens=spaces_between_special_tokens,
+ legacy=legacy,
+ add_prefix_space=add_prefix_space,
+ **kwargs,
+ )
+
+ @property
+ def unk_token_length(self):
+ return len(self.sp_model.encode(str(self.unk_token)))
+
+ # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor
+ def get_spm_processor(self, from_slow=False):
+ tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ if self.legacy or from_slow: # no dependency on protobuf
+ tokenizer.Load(self.vocab_file)
+ return tokenizer
+
+ with open(self.vocab_file, "rb") as f:
+ sp_model = f.read()
+ model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
+ model = model_pb2.ModelProto.FromString(sp_model)
+ normalizer_spec = model_pb2.NormalizerSpec()
+ normalizer_spec.add_dummy_prefix = False
+ model.normalizer_spec.MergeFrom(normalizer_spec)
+ sp_model = model.SerializeToString()
+ tokenizer.LoadFromSerializedProto(sp_model)
+ return tokenizer
+
+ def __getstate__(self):
+ state = self.__dict__.copy()
+ state["sp_model"] = None
+ state["sp_model_proto"] = self.sp_model.serialized_model_proto()
+ return state
+
+ def __setstate__(self, d):
+ self.__dict__ = d
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
+
+ @property
+ def vocab_size(self):
+ """Returns vocab size"""
+ return self.sp_model.get_piece_size()
+
+ def get_vocab(self):
+ """Returns vocab as a dict"""
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize
+ def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
+ """
+ Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the
+ first token is special.
+ """
+ if self.legacy or len(text) == 0:
+ return super().tokenize(text, **kwargs)
+
+ text = text.replace(SPIECE_UNDERLINE, " ")
+ if self.add_prefix_space:
+ text = SPIECE_UNDERLINE + text
+
+ tokens = super().tokenize(text, **kwargs)
+
+ if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
+ tokens = tokens[1:]
+ return tokens
+
+ # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize
+ def _tokenize(self, text, **kwargs):
+ """
+ Returns a tokenized string.
+
+ We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
+ SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give
+ `['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the
+ `unk_token`. Here is an example with `unk_token = ""` and `unk_token_length = 4`.
+ `self.tokenizer.sp_model.encode(" Hey", out_type = str)[4:]`.
+ """
+ tokens = self.sp_model.encode(text, out_type=str)
+ if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")):
+ return tokens
+
+ # 1. Encode string + prefix ex: " Hey"
+ tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
+ # 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
+ return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.sp_model.piece_to_id(token)
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ token = self.sp_model.IdToPiece(index)
+ return token
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ # since we manually add the prefix space, we have to remove it when decoding
+ if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
+ tokens[0] = tokens[0][1:]
+
+ current_sub_tokens = []
+ out_string = ""
+ prev_is_special = False
+ for i, token in enumerate(tokens):
+ # make sure that special tokens are not decoded using sentencepiece model
+ if token in self.all_special_tokens:
+ if not prev_is_special and i != 0 and self.legacy:
+ out_string += " "
+ out_string += self.sp_model.decode(current_sub_tokens) + token
+ prev_is_special = True
+ current_sub_tokens = []
+ else:
+ if prev_is_special and i == 1 and self.add_prefix_space and not token.startswith(SPIECE_UNDERLINE):
+ out_string += " "
+ current_sub_tokens.append(token)
+ prev_is_special = False
+ out_string += self.sp_model.decode(current_sub_tokens)
+ return out_string
+
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ """
+ Save the vocabulary and special tokens file to a directory.
+
+ Args:
+ save_directory (`str`):
+ The directory in which to save the vocabulary.
+
+ Returns:
+ `Tuple(str)`: Paths to the files saved.
+ """
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+ elif not os.path.isfile(self.vocab_file):
+ with open(out_vocab_file, "wb") as fi:
+ content_spiece_model = self.sp_model.serialized_model_proto()
+ fi.write(content_spiece_model)
+
+ return (out_vocab_file,)
+
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
+
+ output = bos_token_id + token_ids_0 + eos_token_id
+
+ if token_ids_1 is not None:
+ output = output + bos_token_id + token_ids_1 + eos_token_id
+
+ return output
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ bos_token_id = [1] if self.add_bos_token else []
+ eos_token_id = [1] if self.add_eos_token else []
+
+ if token_ids_1 is None:
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
+ return (
+ bos_token_id
+ + ([0] * len(token_ids_0))
+ + eos_token_id
+ + bos_token_id
+ + ([0] * len(token_ids_1))
+ + eos_token_id
+ )
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
+ sequence pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of ids.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
+
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
+
+ if token_ids_1 is not None:
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
+
+ return output
+
+ @property
+ def default_chat_template(self):
+ """
+ LLaMA uses [INST] and [/INST] to indicate user messages, and <> and <> to indicate system messages.
+ Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict
+ user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering
+ rather than needing special tokens. The system message is partly 'embedded' in the first user message, which
+ results in an unusual token ordering when it is present. This template should definitely be changed if you wish
+ to fine-tune a model with more flexible role ordering!
+
+ The output should look something like:
+
+ [INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer [INST] Prompt [/INST] Answer
+ [INST] Prompt [/INST]
+
+ The reference for this chat template is [this code
+ snippet](https://github.com/facebookresearch/llama/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/llama/generation.py#L320-L362)
+ in the original repository.
+ """
+ template = (
+ "{% if messages[0]['role'] == 'system' %}"
+ "{% set loop_messages = messages[1:] %}" # Extract system message if it's present
+ "{% set system_message = messages[0]['content'] %}"
+ "{% elif USE_DEFAULT_PROMPT == true and not '<>' in messages[0]['content'] %}"
+ "{% set loop_messages = messages %}" # Or use the default system message if the flag is set
+ "{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}"
+ "{% else %}"
+ "{% set loop_messages = messages %}"
+ "{% set system_message = false %}"
+ "{% endif %}"
+ "{% for message in loop_messages %}" # Loop over all non-system messages
+ "{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}"
+ "{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}"
+ "{% endif %}"
+ "{% if loop.index0 == 0 and system_message != false %}" # Embed system message in first message
+ "{% set content = '<>\\n' + system_message + '\\n<>\\n\\n' + message['content'] %}"
+ "{% else %}"
+ "{% set content = message['content'] %}"
+ "{% endif %}"
+ "{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way
+ "{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}"
+ "{% elif message['role'] == 'system' %}"
+ "{{ '<>\\n' + content.strip() + '\\n<>\\n\\n' }}"
+ "{% elif message['role'] == 'assistant' %}"
+ "{{ ' ' + content.strip() + ' ' + eos_token }}"
+ "{% endif %}"
+ "{% endfor %}"
+ )
+ template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false")
+ default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'")
+ template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message)
+
+ return template
+class MistralTokenizerFast(PreTrainedTokenizerFast):
+ """
+ Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding.
+
+ This uses notably ByteFallback and no normalization.
+
+ ```python
+ >>> from transformers import LlamaTokenizerFast
+
+ >>> tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer")
+ >>> tokenizer.encode("Hello this is a test")
+ [1, 15043, 445, 338, 263, 1243]
+ ```
+
+ If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or
+ call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the
+ values of the first token and final token of an encoded sequence will not be correct). For more details, checkout
+ [post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation.
+
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`, *optional*):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ tokenizer_file (`str`, *optional*):
+ [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
+ contains everything needed to load the tokenizer.
+ clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
+ Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
+ extra spaces.
+ unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+ eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""`):
+ The end of sequence token.
+ add_bos_token (`bool`, *optional*, defaults to `True`):
+ Whether or not to add an `bos_token` at the start of sequences.
+ add_eos_token (`bool`, *optional*, defaults to `False`):
+ Whether or not to add an `eos_token` at the end of sequences.
+ use_default_system_prompt (`bool`, *optional*, defaults to `False`):
+ Whether or not the default system prompt for Llama should be used
+ legacy (`bool`, *optional*):
+ Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622
+ and #25224 which includes fixes to properly handle tokens that appear after special tokens.
+ Make sure to also set `from_slow` to `True`.
+ A simple example:
+
+ - `legacy=True`:
+ ```python
+ >>> from transformers import LlamaTokenizerFast
+
+ >>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=True, from_slow=True)
+ >>> tokenizer.encode("Hello .") # 869 is '▁.'
+ [1, 15043, 29871, 1, 869]
+ ```
+ - `legacy=False`:
+ ```python
+ >>> from transformers import LlamaTokenizerFast
+
+ >>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=False, from_slow=True)
+ >>> tokenizer.encode("Hello .") # 29889 is '.'
+ [1, 15043, 29871, 1, 29889]
+ ```
+ Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details.
+ add_prefix_space (`bool`, *optional*):
+ Whether or not the tokenizer should automatically add a prefix space
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ slow_tokenizer_class = MistralTokenizer
+ padding_side = "left"
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ clean_up_tokenization_spaces=False,
+ unk_token="",
+ bos_token="",
+ eos_token="",
+ add_bos_token=True,
+ add_eos_token=False,
+ use_default_system_prompt=False,
+ legacy=None,
+ add_prefix_space=None,
+ **kwargs,
+ ):
+ if legacy is None:
+ logger.warning_once(
+ f"You are using the default legacy behaviour of the {self.__class__}. This is"
+ " expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you."
+ " If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it"
+ " means, and thoroughly read the reason why this was added as explained in"
+ " https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file"
+ " you can ignore this message."
+ )
+ legacy = True
+ self.legacy = legacy
+
+ if add_prefix_space is not None:
+ kwargs["from_slow"] = True
+
+ super().__init__(
+ vocab_file=vocab_file,
+ tokenizer_file=tokenizer_file,
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
+ unk_token=unk_token,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ add_bos_token=add_bos_token,
+ add_eos_token=add_eos_token,
+ use_default_system_prompt=use_default_system_prompt,
+ add_prefix_space=add_prefix_space,
+ legacy=legacy,
+ **kwargs,
+ )
+ self._add_bos_token = add_bos_token
+ self._add_eos_token = add_eos_token
+ self.update_post_processor()
+ self.use_default_system_prompt = use_default_system_prompt
+ self.vocab_file = vocab_file
+
+ @property
+ def can_save_slow_tokenizer(self) -> bool:
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
+
+ def update_post_processor(self):
+ """
+ Updates the underlying post processor with the current `bos_token` and `eos_token`.
+ """
+ bos = self.bos_token
+ bos_token_id = self.bos_token_id
+ if bos is None and self.add_bos_token:
+ raise ValueError("add_bos_token = True but bos_token = None")
+
+ eos = self.eos_token
+ eos_token_id = self.eos_token_id
+ if eos is None and self.add_eos_token:
+ raise ValueError("add_eos_token = True but eos_token = None")
+
+ single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
+ pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
+
+ special_tokens = []
+ if self.add_bos_token:
+ special_tokens.append((bos, bos_token_id))
+ if self.add_eos_token:
+ special_tokens.append((eos, eos_token_id))
+ self._tokenizer.post_processor = processors.TemplateProcessing(
+ single=single, pair=pair, special_tokens=special_tokens
+ )
+
+ @property
+ def add_eos_token(self):
+ return self._add_eos_token
+
+ @property
+ def add_bos_token(self):
+ return self._add_bos_token
+
+ @add_eos_token.setter
+ def add_eos_token(self, value):
+ self._add_eos_token = value
+ self.update_post_processor()
+
+ @add_bos_token.setter
+ def add_bos_token(self, value):
+ self._add_bos_token = value
+ self.update_post_processor()
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not self.can_save_slow_tokenizer:
+ raise ValueError(
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
+ "tokenizer."
+ )
+
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+
+ return (out_vocab_file,)
+
+ @property
+ # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.default_chat_template
+ def default_chat_template(self):
+ """
+ LLaMA uses [INST] and [/INST] to indicate user messages, and <> and <> to indicate system messages.
+ Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict
+ user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering
+ rather than needing special tokens. The system message is partly 'embedded' in the first user message, which
+ results in an unusual token ordering when it is present. This template should definitely be changed if you wish
+ to fine-tune a model with more flexible role ordering!
+
+ The output should look something like:
+
+ [INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer [INST] Prompt [/INST] Answer
+ [INST] Prompt [/INST]
+
+ The reference for this chat template is [this code
+ snippet](https://github.com/facebookresearch/llama/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/llama/generation.py#L320-L362)
+ in the original repository.
+ """
+ template = (
+ "{% if messages[0]['role'] == 'system' %}"
+ "{% set loop_messages = messages[1:] %}" # Extract system message if it's present
+ "{% set system_message = messages[0]['content'] %}"
+ "{% elif USE_DEFAULT_PROMPT == true and not '<>' in messages[0]['content'] %}"
+ "{% set loop_messages = messages %}" # Or use the default system message if the flag is set
+ "{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}"
+ "{% else %}"
+ "{% set loop_messages = messages %}"
+ "{% set system_message = false %}"
+ "{% endif %}"
+ "{% for message in loop_messages %}" # Loop over all non-system messages
+ "{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}"
+ "{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}"
+ "{% endif %}"
+ "{% if loop.index0 == 0 and system_message != false %}" # Embed system message in first message
+ "{% set content = '<>\\n' + system_message + '\\n<>\\n\\n' + message['content'] %}"
+ "{% else %}"
+ "{% set content = message['content'] %}"
+ "{% endif %}"
+ "{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way
+ "{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}"
+ "{% elif message['role'] == 'system' %}"
+ "{{ '<>\\n' + content.strip() + '\\n<>\\n\\n' }}"
+ "{% elif message['role'] == 'assistant' %}"
+ "{{ ' ' + content.strip() + ' ' + eos_token }}"
+ "{% endif %}"
+ "{% endfor %}"
+ )
+ template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false")
+ default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'")
+ template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message)
+
+ return template
+
+ # TODO ArthurZ let's rely on the template processor instead, refactor all fast tokenizers
+ # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
+
+ output = bos_token_id + token_ids_0 + eos_token_id
+
+ if token_ids_1 is not None:
+ output = output + bos_token_id + token_ids_1 + eos_token_id
+
+ return output
+################################ Tokenizer ##############################
+
+
+
+
+################################ UNIVERSAL NN COMPONENTS ################################
+# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
+
+
+
+# Copied from transformers.models.llama.modeling_llama._get_unpad_data
+def _get_unpad_data(attention_mask):
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
+ return (
+ indices,
+ cu_seqlens,
+ max_seqlen_in_batch,
+ )
+
+
+class MistralRMSNorm(nn.Module):
+ def __init__(self, hidden_size, eps=1e-6):
+ """
+ MistralRMSNorm is equivalent to T5LayerNorm
+ """
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(hidden_size))
+ self.variance_epsilon = eps
+
+ def forward(self, hidden_states):
+ input_dtype = hidden_states.dtype
+ hidden_states = hidden_states.to(torch.float32)
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
+ return self.weight * hidden_states.to(input_dtype)
+
+class MistralRotaryEmbedding(nn.Module):
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
+ super().__init__()
+
+ self.dim = dim
+ self.max_position_embeddings = max_position_embeddings
+ self.base = base
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
+
+ @torch.no_grad()
+ # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.forward
+ def forward(self, x, position_ids):
+ # x: [bs, num_attention_heads, seq_len, head_size]
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
+ position_ids_expanded = position_ids[:, None, :].float()
+ # Force float32 since bfloat16 loses precision on long contexts
+ # See https://github.com/huggingface/transformers/pull/29285
+ device_type = x.device.type
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
+ with torch.autocast(device_type=device_type, enabled=False):
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
+ emb = torch.cat((freqs, freqs), dim=-1)
+ cos = emb.cos()
+ sin = emb.sin()
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
+################################ UNIVERSAL Functions ################################
+def nonzero_mean(x, axis=None):
+ if axis is not None:
+ return x.sum(axis) / (x != 0).sum(axis)
+ return x.sum() / (x != 0).sum()
+def loss_mean(x):
+ return x.sum() / (x != 0).sum()
+
+# Copied from transformers.models.llama.modeling_llama.rotate_half
+def rotate_half(x):
+ """Rotates half the hidden dims of the input."""
+ x1 = x[..., : x.shape[-1] // 2]
+ x2 = x[..., x.shape[-1] // 2 :]
+ return torch.cat((-x2, x1), dim=-1)
+# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
+def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
+ """Applies Rotary Position Embedding to the query and key tensors.
+
+ Args:
+ q (`torch.Tensor`): The query tensor.
+ k (`torch.Tensor`): The key tensor.
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
+ position_ids (`torch.Tensor`, *optional*):
+ Deprecated and unused.
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
+ Returns:
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
+ """
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
+ q_embed = (q * cos[:,:, -q.shape[2]:]) + (rotate_half(q) * sin[:,:, -q.shape[2]:]) if q is not None else None
+ k_embed = (k * cos) + (rotate_half(k) * sin) if k is not None else None
+ return q_embed, k_embed
+
+def apply_grouped_rotary_pos_emb(q, k, cos, sin, position_ids, g_size_1=1, g_size_2=4096):
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
+ position_ids_q = position_ids//g_size_1 + g_size_2 - g_size_2//g_size_1
+ position_ids_k = position_ids//g_size_1
+
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
+ cos_q = cos[position_ids_q].unsqueeze(1) # [bs, 1, seq_len, dim]
+ sin_q = sin[position_ids_q].unsqueeze(1) # [bs, 1, seq_len, dim]
+ cos_k = cos[position_ids_k].unsqueeze(1) # [bs, 1, seq_len, dim]
+ sin_k = sin[position_ids_k].unsqueeze(1) # [bs, 1, seq_len, dim]
+ q_embed = (q * cos_q) + (rotate_half(q) * sin_q) if q is not None else None
+ k_embed = (k * cos_k) + (rotate_half(k) * sin_k) if k is not None else None
+
+ return q_embed, k_embed
+
+def load_balancing_loss_func(
+ gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
+) -> float:
+ r"""
+ Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
+
+ See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
+ function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
+ experts is too unbalanced.
+
+ Args:
+ gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
+ Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
+ shape [batch_size X sequence_length, num_experts].
+ attention_mask (`torch.Tensor`, None):
+ The attention_mask used in forward function
+ shape [batch_size X sequence_length] if not None.
+ num_experts (`int`, *optional*):
+ Number of experts
+
+ Returns:
+ The auxiliary loss.
+ """
+ if gate_logits is None or not isinstance(gate_logits, tuple):
+ return 0
+
+ if isinstance(gate_logits, tuple):
+ compute_device = gate_logits[0].device
+ concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
+
+ routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
+
+ _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
+
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
+
+ if attention_mask is None:
+ # Compute the percentage of tokens routed to each experts
+ tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
+
+ # Compute the average probability of routing to these experts
+ router_prob_per_expert = torch.mean(routing_weights, dim=0)
+ else:
+ batch_size, sequence_length = attention_mask.shape
+ num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
+
+ # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
+ expert_attention_mask = (
+ attention_mask[None, :, :, None, None]
+ .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
+ .reshape(-1, top_k, num_experts)
+ .to(compute_device)
+ )
+
+ # Compute the percentage of tokens routed to each experts
+ tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
+ expert_attention_mask, dim=0
+ )
+
+ # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
+ router_per_expert_attention_mask = (
+ attention_mask[None, :, :, None]
+ .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
+ .reshape(-1, num_experts)
+ .to(compute_device)
+ )
+
+ # Compute the average probability of routing to these experts
+ router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
+ router_per_expert_attention_mask, dim=0
+ )
+
+ overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
+ return overall_loss * num_experts
+
+class MistralMLP(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.hidden_size = config.hidden_size
+ self.intermediate_size = config.intermediate_size
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
+ self.act_fn = ACT2FN[config.hidden_act]
+
+ def forward(self, hidden_state):
+ return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
+# Copied from transformers.models.llama.modeling_llama.repeat_kv
+def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
+ """
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
+ """
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
+ if n_rep == 1:
+ return hidden_states
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
+
+class MistralAttention(nn.Module):
+ """
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
+ and "Generating Long Sequences with Sparse Transformers".
+ """
+
+ def __init__(self, config: MistralConfig, layer_idx: Optional[int] = None):
+ super().__init__()
+ self.config = config
+ self.layer_idx = layer_idx
+ if layer_idx is None:
+ logger.warning_once(
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
+ "when creating this class."
+ )
+
+ self.attention_dropout = config.attention_dropout
+ self.hidden_size = config.hidden_size
+ self.num_heads = config.num_attention_heads
+ self.head_dim = self.hidden_size // self.num_heads
+ self.num_key_value_heads = config.num_key_value_heads
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
+ self.max_position_embeddings = config.max_position_embeddings
+ self.rope_theta = config.rope_theta
+ self.is_causal = True
+
+ if (self.head_dim * self.num_heads) != self.hidden_size:
+ raise ValueError(
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
+ f" and `num_heads`: {self.num_heads})."
+ )
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
+
+ self.rotary_emb = MistralRotaryEmbedding(
+ self.head_dim,
+ max_position_embeddings=self.max_position_embeddings,
+ base=self.rope_theta,
+ )
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Cache] = None,
+ output_attentions: bool = False,
+ use_cache: bool = False,
+ cache_position: Optional[torch.LongTensor] = None,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ bsz, q_len, _ = hidden_states.size()
+
+ query_states = self.q_proj(hidden_states)
+ key_states = self.k_proj(hidden_states)
+ value_states = self.v_proj(hidden_states)
+
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+
+ cos, sin = self.rotary_emb(value_states, position_ids)
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
+
+ if past_key_value is not None:
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
+
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
+
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
+
+ if attention_mask is not None: # no matter the length, we just slice it
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
+ attn_weights = attn_weights + causal_mask
+
+ # upcast attention to fp32
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
+ attn_output = torch.matmul(attn_weights, value_states)
+
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.transpose(1, 2).contiguous()
+
+ attn_output = attn_output.view(bsz, q_len, -1)
+ attn_output = self.o_proj(attn_output)
+
+ if not output_attentions:
+ attn_weights = None
+
+ return attn_output, attn_weights, past_key_value
+class MistralFlashAttention2(MistralAttention):
+ """
+ Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
+ flash attention and deal with padding tokens in case the input contains any of them.
+ """
+
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Cache] = None,
+ output_attentions: bool = False,
+ use_cache: bool = False,
+ cache_position: Optional[torch.LongTensor] = None,
+ ):
+ if isinstance(past_key_value, StaticCache):
+ raise ValueError(
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
+ )
+
+ output_attentions = False
+
+ bsz, q_len, _ = hidden_states.size()
+
+ query_states = self.q_proj(hidden_states)
+ key_states = self.k_proj(hidden_states)
+ value_states = self.v_proj(hidden_states)
+
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+
+ kv_seq_len = key_states.shape[-2]
+ if past_key_value is not None:
+ kv_seq_len += cache_position[0]
+
+ cos, sin = self.rotary_emb(value_states, position_ids)
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
+
+ if past_key_value is not None:
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
+ if (
+ getattr(self.config, "sliding_window", None) is not None
+ and kv_seq_len > self.config.sliding_window
+ and cache_has_contents
+ ):
+ slicing_tokens = 1 - self.config.sliding_window
+
+ past_key = past_key_value[self.layer_idx][0]
+ past_value = past_key_value[self.layer_idx][1]
+
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
+
+ if past_key.shape[-2] != self.config.sliding_window - 1:
+ raise ValueError(
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
+ f" {past_key.shape}"
+ )
+
+ if attention_mask is not None:
+ attention_mask = attention_mask[:, slicing_tokens:]
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
+
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
+
+ # repeat k/v heads if n_kv_heads < n_heads
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
+
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
+ # cast them back in float16 just to be sure everything works as expected.
+ input_dtype = query_states.dtype
+ if input_dtype == torch.float32:
+ if torch.is_autocast_enabled():
+ target_dtype = torch.get_autocast_gpu_dtype()
+ # Handle the case where the model is quantized
+ elif hasattr(self.config, "_pre_quantization_dtype"):
+ target_dtype = self.config._pre_quantization_dtype
+ else:
+ target_dtype = self.q_proj.weight.dtype
+
+ logger.warning_once(
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
+ f" {target_dtype}."
+ )
+
+ query_states = query_states.to(target_dtype)
+ key_states = key_states.to(target_dtype)
+ value_states = value_states.to(target_dtype)
+
+ # Reashape to the expected shape for Flash Attention
+ query_states = query_states.transpose(1, 2)
+ key_states = key_states.transpose(1, 2)
+ value_states = value_states.transpose(1, 2)
+
+ attn_output = _flash_attention_forward(
+ query_states,
+ key_states,
+ value_states,
+ attention_mask,
+ q_len,
+ dropout=dropout_rate,
+ sliding_window=getattr(self.config, "sliding_window", None),
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
+ is_causal=self.is_causal,
+ )
+
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
+ attn_output = self.o_proj(attn_output)
+
+ if not output_attentions:
+ attn_weights = None
+
+ return attn_output, attn_weights, past_key_value
+# Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Mistral
+class MistralSdpaAttention(MistralAttention):
+ """
+ Mistral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
+ `MistralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
+ SDPA API.
+ """
+
+ # Adapted from MistralAttention.forward
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Cache] = None,
+ output_attentions: bool = False,
+ use_cache: bool = False,
+ cache_position: Optional[torch.LongTensor] = None,
+ **kwargs,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ if output_attentions:
+
+ logger.warning_once(
+ "MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
+ )
+ return super().forward(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ cache_position=cache_position,
+ )
+
+ bsz, q_len, _ = hidden_states.size()
+
+ query_states = self.q_proj(hidden_states)
+ key_states = self.k_proj(hidden_states)
+ value_states = self.v_proj(hidden_states)
+
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+
+ cos, sin = self.rotary_emb(value_states, position_ids)
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
+
+ if past_key_value is not None:
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
+
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
+
+ causal_mask = attention_mask
+ if attention_mask is not None:
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
+
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
+ if query_states.device.type == "cuda" and causal_mask is not None:
+ query_states = query_states.contiguous()
+ key_states = key_states.contiguous()
+ value_states = value_states.contiguous()
+
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
+ is_causal = True if causal_mask is None and q_len > 1 else False
+
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
+ query_states,
+ key_states,
+ value_states,
+ attn_mask=causal_mask,
+ dropout_p=self.attention_dropout if self.training else 0.0,
+ is_causal=is_causal,
+ )
+
+ attn_output = attn_output.transpose(1, 2).contiguous()
+ attn_output = attn_output.view(bsz, q_len, -1)
+
+ attn_output = self.o_proj(attn_output)
+
+ return attn_output, None, past_key_value
+MISTRAL_ATTENTION_CLASSES = {
+ "eager": MistralAttention,
+ "flash_attention_2": MistralFlashAttention2,
+ "sdpa": MistralSdpaAttention,
+}
+
+# Copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->Mistral, LLAMA->MISTRAL
+class MistralDecoderLayer(nn.Module):
+ def __init__(self, config: MistralConfig, layer_idx: int):
+ super().__init__()
+ self.hidden_size = config.hidden_size
+
+ self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
+
+ self.mlp = MistralMLP(config)
+ self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Cache] = None,
+ output_attentions: Optional[bool] = False,
+ use_cache: Optional[bool] = False,
+ cache_position: Optional[torch.LongTensor] = None,
+ **kwargs,
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`, *optional*):
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
+ query_sequence_length, key_sequence_length)` if default attention is used.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
+ (see `past_key_values`).
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
+ Indices depicting the position of the input sequence tokens in the sequence
+ kwargs (`dict`, *optional*):
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
+ into the model
+ """
+ residual = hidden_states
+
+ hidden_states = self.input_layernorm(hidden_states)
+
+ # Self Attention
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ cache_position=cache_position,
+ **kwargs,
+ )
+ hidden_states = residual + hidden_states
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.post_attention_layernorm(hidden_states)
+ hidden_states = self.mlp(hidden_states)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights,)
+
+ if use_cache:
+ outputs += (present_key_value,)
+
+ return outputs
+
+class MixtralBlockSparseTop2MLP(nn.Module):
+ def __init__(self, config: MixtralConfig):
+ super().__init__()
+ self.ffn_dim = config.intermediate_size
+ self.hidden_dim = config.hidden_size
+
+ self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
+ self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
+ self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
+
+ self.act_fn = ACT2FN[config.hidden_act]
+
+ def forward(self, hidden_states):
+ current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
+ current_hidden_states = self.w2(current_hidden_states)
+ return current_hidden_states
+class MixtralSparseMoeBlock(nn.Module):
+ """
+ This implementation is
+ strictly equivalent to standard MoE with full capacity (no
+ dropped tokens). It's faster since it formulates MoE operations
+ in terms of block-sparse operations to accomodate imbalanced
+ assignments of tokens to experts, whereas standard MoE either
+ (1) drop tokens at the cost of reduced performance or (2) set
+ capacity factor to number of experts and thus waste computation
+ and memory on padding.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ self.hidden_dim = config.hidden_size
+ self.ffn_dim = config.intermediate_size
+ self.num_experts = config.num_local_experts
+ self.top_k = config.num_experts_per_tok
+
+ # gating
+ self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
+
+ self.experts = nn.ModuleList([MixtralBlockSparseTop2MLP(config) for _ in range(self.num_experts)])
+
+ # Jitter parameters
+ self.jitter_noise = config.router_jitter_noise
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ """ """
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
+ if self.training and self.jitter_noise > 0:
+ hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
+ hidden_states = hidden_states.view(-1, hidden_dim)
+ # router_logits: (batch * sequence_length, n_experts)
+ router_logits = self.gate(hidden_states)
+
+ routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
+ routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
+ routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
+ # we cast back to the input dtype
+ routing_weights = routing_weights.to(hidden_states.dtype)
+
+ final_hidden_states = torch.zeros(
+ (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
+ )
+
+ # One hot encode the selected experts to create an expert mask
+ # this will be used to easily index which expert is going to be sollicitated
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
+
+ # Loop over all available experts in the model and perform the computation on each expert
+ for expert_idx in range(self.num_experts):
+ expert_layer = self.experts[expert_idx]
+ idx, top_x = torch.where(expert_mask[expert_idx])
+
+ # Index the correct hidden states and compute the expert hidden state for
+ # the current expert. We need to make sure to multiply the output hidden
+ # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
+ current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
+ current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
+
+ # However `index_add_` only support torch tensors for indexing so we'll use
+ # the `top_x` tensor here.
+ final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
+ return final_hidden_states, router_logits
+class MixtralDecoderLayer(nn.Module):
+ def __init__(self, config: MixtralConfig, layer_idx: int):
+ super().__init__()
+ self.hidden_size = config.hidden_size
+
+ self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
+ self.mlp = MistralMLP(config)
+ self.block_sparse_moe = MixtralSparseMoeBlock(config)
+ self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ output_attentions: Optional[bool] = False,
+ output_router_logits: Optional[bool] = False,
+ use_cache: Optional[bool] = False,
+ cache_position: Optional[torch.LongTensor] = None,
+ **kwargs,
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
+ `(batch, sequence_length)` where padding elements are indicated by 0.
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_router_logits (`bool`, *optional*):
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
+ should not be returned during inference.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
+ (see `past_key_values`).
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
+ Indices depicting the position of the input sequence tokens in the sequence.
+ kwargs (`dict`, *optional*):
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
+ into the model
+ """
+
+ residual = hidden_states
+
+ hidden_states = self.input_layernorm(hidden_states)
+
+ # Self Attention
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ cache_position=cache_position,
+ )
+ hidden_states = residual + hidden_states
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.post_attention_layernorm(hidden_states)
+ hidden_states, router_logits = self.block_sparse_moe(hidden_states)
+ hidden_states = residual + hidden_states
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.post_attention_layernorm(hidden_states)
+ hidden_states = self.mlp(hidden_states)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights,)
+
+ if use_cache:
+ outputs += (present_key_value,)
+
+ if output_router_logits:
+ outputs += (router_logits,)
+
+ return outputs
+
+################################ closed COMPONENTS ################################
+
+
+############# Causal LM #################
+class MistralForCausalLM(MistralPreTrainedModel):
+ _tied_weights_keys = ["lm_head.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.model = MistralModel(config)
+ self.vocab_size = config.vocab_size
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+ self.max_thoughts = config.max_thoughts
+ self.merged_lm_and_talk_heads = config.merged_lm_and_talk_heads
+ self.use_concat_talk_head = config.use_concat_talk_head
+ self.use_shallow_talk = config.use_shallow_talk
+ self.use_complex_talk_head = config.use_complex_talk_head
+ self.use_weighted_talk_head = config.use_weighted_talk_head
+ # the weighted head will output a single value, so it can't be passed to the lm head
+ assert not (self.use_weighted_talk_head and self.use_shallow_talk)
+
+ self.n_ahead = 1
+ self.n_ahead_talk = 1
+ self.n_passes = 1
+ self.n_tokens_print = 1
+ self.gradient_accumulation_steps = 1
+ self.training_steps = 0
+ self.tokenizer = None
+ self.start_token_id = None
+ self.end_token_id = None
+ self.rm_initialized = False
+ self.residual_talk_head = True
+ self.thought_init_std_scale = 1e-2
+
+ self.final_only_mode = False
+ self.first_and_last_mode = True
+ self.first_only = False
+ self.original_loss_weight = 0.5
+
+ self.cumulative_residual = False
+ self.clever_residual = False
+ self.skip_residual = False
+ self.no_residual = True
+
+ self.optimize_lm_head_only_at_start = False
+ self.optimize_model_only_at_start = False
+
+ if self.optimize_model_only_at_start:
+ raise NotImplementedError
+ self.train_only_thinking_embedding = False
+ self.weighted_embeddings = False
+ self.use_start_thought_token = True
+ self.use_end_thought_token = True
+ self.initialize_thought_embedding_to_normal = False
+ self.initial_start_token = "---"
+ self.initial_end_token = "---"
+ self.output_logits_at_the_end = True
+
+ self.gumbel_temperature = 0.001
+
+ self.use_policy_loss = True
+ self.include_policy_loss = True
+ self.trice_mode = True
+ self.remove_negative_rewards = True
+ self.use_policy_loss_for_end_thought = True
+
+ self.base_original_mode = False
+ self.original_mode = False
+
+ self.thought_prefix = "(Let's think step by step"
+ self.tokenized_thought_prefix = None
+ self.log_dict = defaultdict(int)
+ self.eval_log_dict = defaultdict(int)
+ self.print_final_only = True
+ self.loss_mean = loss_mean
+ self.all_rewards = []
+ self.all_unreduced_losses = []
+ self.kill_after = 100
+
+ self.start_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))
+ self.end_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))
+
+ self.policy_loss_beta = 1e6
+ self.embedding_scale = 1e2
+ self.reinforce_temperature = 3
+ self.base_loss_beta = 1
+
+ # Not used in the paper:
+ self.use_thought_prefix = False
+ self.use_reparam_for_thought_embeddings = False
+ self.use_upper_triangular = False
+ self.subtract_mean_reward = False
+ self.comparison_mode = False
+ self.gumbel_detach = True
+
+ # For visualization
+ self.eval_mode = False
+
+ num_talk = 1
+ talk_input_dim = config.hidden_size if not self.use_concat_talk_head else config.hidden_size * 2
+ if self.use_weighted_talk_head:
+ talk_output_dim = 1
+ else:
+ talk_output_dim = config.hidden_size if self.use_shallow_talk else config.vocab_size
+
+ if not self.merged_lm_and_talk_heads:
+ if self.use_complex_talk_head:
+ self.talk_head = nn.ModuleList([nn.Sequential(
+ nn.Linear(talk_input_dim, config.hidden_size),
+ nn.ReLU(),
+ nn.Linear(config.hidden_size, config.hidden_size),
+ nn.ReLU(),
+ nn.Linear(config.hidden_size, talk_output_dim, bias=False)
+ )])
+ else:
+ self.talk_head = nn.ModuleList([nn.Sequential(
+ nn.Linear(talk_input_dim, talk_output_dim, bias=False)
+ )])
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.embed_tokens = value
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def set_decoder(self, decoder):
+ self.model = decoder
+
+ def get_decoder(self):
+ return self.model
+ def calculate_policy_loss(self, thoughts, rewards):
+ thought_log_probs = []
+ for thought in thoughts:
+ thought_log_prob = self.lm_head(thought).log_softmax(dim=-1)
+ thought_log_probs.append(thought_log_prob)
+
+ thought_log_probs = torch.stack(thought_log_probs, dim=1) # (batch_size, num_thoughts, seq_length, vocab_size)
+ thought_probs = torch.exp(thought_log_probs)
+
+ policy_loss = -torch.mean(thought_log_probs * rewards.unsqueeze(-1).unsqueeze(-1))
+
+ return policy_loss
+
+ def _generate_thoughts(self, hidden_states, max_length):
+ batch_size = hidden_states.size(0)
+ thought_ids = torch.zeros((batch_size, self.config.max_thoughts, max_length), dtype=torch.long, device=hidden_states.device)
+ thought_embeddings = []
+
+ for i in range(self.config.max_thoughts):
+ thought_input_ids = torch.zeros((batch_size, 1), dtype=torch.long, device=hidden_states.device)
+ thought_outputs = self.generate(
+ input_ids=thought_input_ids,
+ max_length=max_length,
+ do_sample=True,
+ top_k=50,
+ top_p=0.95,
+ pad_token_id=self.config.pad_token_id,
+ eos_token_id=self.config.eos_token_id,
+ )
+ thought_ids[:, i, :] = thought_outputs
+ thought_embeddings.append(self.get_input_embeddings()(thought_outputs))
+
+ thought_embeddings = torch.stack(thought_embeddings, dim=1)
+ return thought_ids, thought_embeddings
+
+ @torch.no_grad()
+ def infer(
+ self,
+ input_ids: torch.LongTensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ batch_size, seq_len = input_ids.shape
+
+ # Save the original input_ids and attention_mask for later use
+ original_input_ids = input_ids.clone()
+ original_attention_mask = attention_mask.clone() if attention_mask is not None else None
+
+ # Append the start thought token to the input sequence
+ start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
+ input_ids = torch.cat([input_ids, torch.tensor([[start_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
+ seq_len += 1
+
+ # Update the attention mask
+ if attention_mask is not None:
+ attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
+
+ # Generate the continuation
+ continuation_length = self.n_ahead - 2
+ new_key_values = past_key_values
+
+ start_time = time.time()
+ for continuation_idx in range(continuation_length):
+ outputs = self.model(
+ input_ids=input_ids if continuation_idx == 0 else next_token_id.unsqueeze(-1).to(input_ids.device),
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=new_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=True,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ new_key_values = outputs.past_key_values
+
+ hidden_states = outputs[0]
+
+ logits = self.lm_head(hidden_states)
+ logits = logits[:, -1, :] # Only consider the last token
+
+ # Apply Gumbel-Softmax to the logits
+ next_token_logits = F.gumbel_softmax(logits, tau=self.gumbel_temperature, hard=True, dim=-1)
+ next_token_id = torch.argmax(next_token_logits, dim=-1)
+
+ # Append the generated token to the input sequence
+ input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1).to(input_ids.device)], dim=-1)
+ seq_len += 1
+
+ # Update the attention mask
+ if attention_mask is not None:
+ attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
+
+ # Append the end thought token to the input sequence
+ end_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
+ input_ids = torch.cat([input_ids, torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
+ seq_len += 1
+
+ # Update the attention mask
+ if attention_mask is not None:
+ attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
+
+ # Get the hidden states before and after the thought
+ outputs_before = self.model(
+ input_ids=original_input_ids,
+ attention_mask=original_attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states_before = outputs_before[0][:, -1:, :]
+
+ # two new tokens: last continuation token and end thought token
+ outputs_after = self.model(
+ input_ids=torch.cat([next_token_id.unsqueeze(-1).to(input_ids.device), torch.tensor(end_thought_token_id).unsqueeze(-1).unsqueeze(-1).to(input_ids.device)], dim=-1),
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=new_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states_after = outputs_after[0][:, -1:, :]
+
+ # Apply the talk head to get the mixing weight
+ mixing_weight = self.talk_head[0](torch.cat([hidden_states_before, hidden_states_after], dim=-1))
+
+ # Apply the mixing weight to the hidden states
+ mixed_hidden_states = (1 - mixing_weight) * hidden_states_before + mixing_weight * hidden_states_after
+
+ # Apply the language model head to get the final logits
+ logits = self.lm_head(mixed_hidden_states)
+ return logits
+
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, MistralForCausalLM
+
+ >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
+ >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
+
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
+
+ >>> # Generate
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
+ ```"""
+ log_dict = self.log_dict if self.training else self.eval_log_dict
+
+ if self.training and self.kill_after is not None and self.training_steps // self.gradient_accumulation_steps > self.kill_after:
+ raise ValueError("Killed after")
+
+ if not self.training:
+ n_ahead_talk_to_restore = self.n_ahead_talk
+ n_passes_to_restore = self.n_passes
+ self.n_ahead_talk = 1
+ self.n_passes = 1
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ assert self.cumulative_residual or self.clever_residual or self.skip_residual or self.no_residual
+ assert not (self.skip_residual and self.use_policy_loss)
+
+ if self.tokenized_thought_prefix is None and self.use_thought_prefix:
+ self.tokenized_thought_prefix = self.tokenizer(self.thought_prefix, return_tensors="pt", add_special_tokens=False)["input_ids"]
+
+ def apply_head(head, states, detach=False):
+ if detach:
+ head_weight = head.weight.detach()
+ else:
+ head_weight = head.weight
+ head_weight = head_weight.to(states.device)
+ return (head_weight @ states.transpose(-1, -2)).transpose(-1, -2).contiguous()
+
+ def idx_if_sequential(head, idx=0):
+ if isinstance(head, nn.Sequential) or isinstance(head, nn.ModuleList):
+ return idx_if_sequential(head[idx], idx=idx)
+ return head
+
+ def none_repeat_interleave(x, n):
+ if x is None:
+ return x
+ return x.repeat_interleave(n, dim=0)
+
+ if self.n_passes > 1:
+ input_ids = none_repeat_interleave(input_ids, self.n_passes)
+ attention_mask = none_repeat_interleave(attention_mask, self.n_passes)
+ position_ids = none_repeat_interleave(position_ids, self.n_passes)
+ inputs_embeds = none_repeat_interleave(inputs_embeds, self.n_passes)
+ labels = none_repeat_interleave(labels, self.n_passes)
+ if past_key_values is not None:
+ past_key_values = [none_repeat_interleave(p, self.n_passes) for p in past_key_values]
+ cur_token_indices = torch.arange(input_ids.shape[1], device=input_ids.device)
+
+ self.tokenizer_has_start_thought_token = True
+ self.tokenizer_has_end_thought_token = True
+ if self.start_token_id is None:
+ self.start_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
+ if self.start_token_id == 0:
+ self.start_token_id = self.tokenizer.bos_token_id
+ self.tokenizer_has_start_thought_token = False
+ elif self.use_start_thought_token:
+ # base_start_id = self.tokenizer.convert_tokens_to_ids(self.initial_start_token)
+ base_start_id = self.tokenizer.encode(self.initial_start_token, add_special_tokens=False)[0]
+ if self.initialize_thought_embedding_to_normal:
+ self.start_embedding.data = torch.zeros_like(self.start_embedding.data)
+ else:
+ self.start_embedding.data[0] = self.model.embed_tokens.weight.data[base_start_id].clone().detach() / self.embedding_scale
+ self.start_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale)
+ if self.end_token_id is None:
+ self.end_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
+ if self.end_token_id == 0:
+ self.end_token_id = self.tokenizer.eos_token_id
+ self.tokenizer_has_end_thought_token = False
+ elif self.use_end_thought_token:
+ # base_end_id = self.tokenizer.convert_tokens_to_ids(self.initial_end_token)
+ base_end_id = self.tokenizer.encode(self.initial_end_token, add_special_tokens=False)[0]
+ if self.initialize_thought_embedding_to_normal:
+ self.end_embedding.data = torch.zeros_like(self.end_embedding.data)
+ else:
+ self.end_embedding.data[0] = self.model.embed_tokens.weight.data[base_end_id].clone().detach() / self.embedding_scale
+ self.end_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale)
+
+ if not self.rm_initialized and (self.n_ahead > 1 or not self.base_original_mode):
+ self.rm_initialized = True
+ if not self.use_shallow_talk:
+ head = self.talk_head[0]
+ cur_head = head[-1] if isinstance(head, nn.Sequential) else head
+ talk_input_dim = cur_head.weight.data.shape[1]
+ talk_output_dim = 1 if self.use_weighted_talk_head else self.lm_head.weight.data.shape[0]
+ cur_head.weight.data = torch.zeros(talk_output_dim, talk_input_dim, device=cur_head.weight.device, dtype=cur_head.weight.dtype)
+ else:
+ # convert to identity transform
+ def lambda_transform(cur_head):
+ if cur_head.weight.data.shape[0] != cur_head.weight.data.shape[1]:
+ return torch.cat([
+ torch.eye(
+ cur_head.weight.data.shape[0],
+ device=cur_head.weight.device,
+ dtype=cur_head.weight.dtype
+ ),
+ torch.zeros(
+ cur_head.weight.data.shape[0],
+ cur_head.weight.data.shape[1] - cur_head.weight.data.shape[0],
+ device=cur_head.weight.device,
+ dtype=cur_head.weight.dtype
+ )], dim=1)
+ return torch.eye(
+ cur_head.weight.data.shape[0],
+ device=cur_head.weight.device,
+ dtype=cur_head.weight.dtype
+ )
+ if isinstance(self.talk_head[0], nn.Sequential):
+ for cur_head in self.talk_head[0]:
+ # if it has weights
+ if hasattr(cur_head, "weight"):
+ cur_head.weight.data = lambda_transform(cur_head)
+ else:
+ self.talk_head[-1].weight.data = lambda_transform(self.talk_head[0])
+
+ loss = None
+ prev_rm_tokens = None
+ cur_rm_tokens = None
+ prev_rm_logits = None
+ prev_sample_probs = None
+ did_skip_sampling = None
+ skip_sampling = None
+ sample_probs = None
+ hidden_states = None
+ logits = None
+ talk_kl_penalty = None
+ rm_logits = None
+ residual_logits = None
+ probabilities_2d = None
+ prev_probabilities_2d = None
+ policy_reward = None
+ logits_to_output = None
+ batch_size, seq_len = input_ids.shape
+ base_input_ids = input_ids.clone()
+ loss_list = []
+ dqn_loss_list = []
+ sampled_token_history = []
+ sample_probs_history = []
+ action_loglikelihoods_list = []
+
+ if self.use_end_thought_token or self.use_start_thought_token:
+ if not self.use_reparam_for_thought_embeddings:
+ start_embedding = self.start_embedding[0].unsqueeze(0) * self.embedding_scale
+ end_embedding = self.end_embedding[0].unsqueeze(0) * self.embedding_scale
+ else:
+ start_embedding = self.start_embedding * self.embedding_scale
+ end_embedding = self.end_embedding * self.embedding_scale
+ base_embeddings = self.model.embed_tokens.weight
+ if self.train_only_thinking_embedding:
+ base_embeddings = base_embeddings.detach()
+ # # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ fwd_iters = 1 if self.original_mode else self.n_ahead + self.n_ahead_talk - 1
+ for ahead_idx in range(fwd_iters):
+ past_key_values_length = 0
+ if past_key_values is not None:
+ use_legacy_cache = not isinstance(past_key_values, Cache)
+ if use_legacy_cache:
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
+ past_key_values_length = past_key_values.get_usable_length(seq_len)
+
+ if position_ids is None:
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+ position_ids = torch.arange(
+ past_key_values_length, seq_len + past_key_values_length, dtype=torch.long, device=device
+ )
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_len)
+ else:
+ position_ids = position_ids.view(-1, seq_len).long()
+
+ if inputs_embeds is None:
+ contains_start = self.use_start_thought_token and (input_ids == self.start_token_id).any()
+ contains_end = self.use_end_thought_token and (input_ids == self.end_token_id).any()
+ contains_thought = contains_start or contains_end
+ if contains_thought:
+ thought_id = self.start_token_id if contains_start else self.end_token_id
+ cur_thought_embedding = start_embedding if contains_start else end_embedding
+ if self.use_reparam_for_thought_embeddings:
+ inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype)
+ inputs_embeds = inputs_embeds.detach() * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0]
+ if contains_start:
+ sampled_start = inputs_embeds.clone().detach()
+ if contains_end:
+ sampled_end = inputs_embeds.clone().detach()
+ else:
+ inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1)
+ else:
+ with torch.set_grad_enabled(not self.train_only_thinking_embedding):
+ inputs_embeds = self.model.embed_tokens(input_ids)
+
+ if self.n_ahead != 1 or self.n_ahead_talk != 1 or self.comparison_mode:
+ if attention_mask is None:
+ base_attention_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=0).to(input_ids.device)
+ base_attention_mask = base_attention_mask.view(1, 1, seq_len, seq_len)
+ base_attention_mask = base_attention_mask.repeat(input_ids.shape[0], 1, 1, 1)
+ attention_mask = base_attention_mask
+ breakpoint()
+ elif attention_mask.dim() == 2:
+ if seq_len + past_key_values_length != attention_mask.shape[-1]:
+ breakpoint()
+ attention_mask = torch.cat(
+ [torch.ones((attention_mask.shape[0], past_key_values_length), dtype=attention_mask.dtype, device=attention_mask.device), attention_mask],
+ dim=-1
+ )
+ # # if the attention mask
+ attention_mask = _prepare_4d_causal_attention_mask(
+ attention_mask,
+ (batch_size, seq_len),
+ inputs_embeds,
+ past_key_values_length,
+ sliding_window=self.config.sliding_window,
+ )
+
+ outputs = self.model(
+ # input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ prev_hidden_states = hidden_states
+ hidden_states = outputs[0]
+ prev_rm_logits = rm_logits # for policy gradient
+ prev_rm_tokens = cur_rm_tokens # for policy gradient
+
+ if ahead_idx == 0:
+ hidden_states_lm = hidden_states
+ logits = self.lm_head(hidden_states_lm)
+ base_hidden_states = hidden_states.clone()
+ initial_loss_logits = logits.clone()
+ if self.optimize_lm_head_only_at_start or self.optimize_model_only_at_start:
+ logits = logits.detach()
+ base_hidden_states = base_hidden_states.detach()
+ if self.optimize_model_only_at_start:
+ hidden_states = hidden_states.detach()
+ base_logits = logits.clone()
+ else:
+ talk_hidden_states = hidden_states
+ if self.merged_lm_and_talk_heads:
+ assert self.no_residual
+ residual_logits = self.lm_head(hidden_states)
+ talk_hidden_states = hidden_states
+ else:
+ if ahead_idx > self.n_ahead - 1:
+ cur_base_hidden = torch.cat([
+ base_hidden_states[..., ahead_idx - self.n_ahead + 1:, :],
+ base_hidden_states[..., :ahead_idx - self.n_ahead + 1, :]
+ ], dim=-2)
+ else:
+ cur_base_hidden = base_hidden_states
+
+ if self.use_concat_talk_head:
+ # concatenate the hidden states with the original hidden states
+ head_input_hidden_states = torch.cat([cur_base_hidden, talk_hidden_states], dim=-1)
+ else:
+ head_input_hidden_states = talk_hidden_states
+
+ residual_logits = self.talk_head[0](head_input_hidden_states)
+ if self.use_shallow_talk:
+ residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start)
+ residual_logits = residual_logits.to(logits.device)
+ if self.use_weighted_talk_head:
+ # combine the cur_base_hidden with the talk_hidden_states according to the weighted head
+ residual_logits = cur_base_hidden * (1 - residual_logits) + talk_hidden_states * residual_logits
+ residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start)
+
+ assert sum([self.cumulative_residual, self.clever_residual, self.skip_residual, self.no_residual]) == 1
+ if self.clever_residual:
+ if ahead_idx >= self.n_ahead - 1:
+ # get the logits shifted according to the current talk ahead
+ cur_base_logits = torch.cat([
+ base_logits[..., ahead_idx - self.n_ahead + 1:, :],
+ base_logits[..., :ahead_idx - self.n_ahead + 1, :]
+ ], dim=-2)
+ if self.optimize_lm_head_only_at_start:
+ cur_base_logits = cur_base_logits.detach()
+ logits = cur_base_logits + residual_logits
+ else:
+ logits += residual_logits / self.n_ahead
+ elif self.cumulative_residual:
+ if self.residual_talk_head:
+ if ahead_idx < self.n_ahead:
+ logits += residual_logits
+ else:
+ # get the logits shifted according to the current talk ahead
+ cur_base_logits = torch.cat([
+ base_logits[..., ahead_idx - self.n_ahead + 1:, :],
+ base_logits[..., :ahead_idx - self.n_ahead + 1, :]
+ ], dim=-2)
+ if self.optimize_lm_head_only_at_start:
+ cur_base_logits = cur_base_logits.detach()
+ logits = cur_base_logits + residual_logits
+ else:
+ if ahead_idx < self.n_ahead:
+ logits += residual_logits
+ else:
+ logits = residual_logits
+ elif self.skip_residual:
+ if ahead_idx >= self.n_ahead:
+ # get the logits shifted according to the current talk ahead
+ cur_base_logits = torch.cat([
+ base_logits[..., ahead_idx - self.n_ahead + 1:, :],
+ base_logits[..., :ahead_idx - self.n_ahead + 1, :]
+ ], dim=-2)
+ if self.optimize_lm_head_only_at_start:
+ cur_base_logits = cur_base_logits.detach()
+ logits = cur_base_logits
+ elif self.no_residual:
+ logits = residual_logits
+ else:
+ logits = base_logits + residual_logits
+
+ attempted = False
+ talk_loss_list = []
+ if self.original_mode or (self.n_ahead == 1) or (self.comparison_mode and ahead_idx == 0):# or (self.optimize_lm_head_only_at_start and ahead_idx == 0):
+ loss = None
+ attempted = True
+
+ if labels is not None:
+ for shift_amount in range(self.n_ahead_talk):
+ # Shift so that tokens < n predict n
+ # ab[cde]f
+ # abc[def]
+ if ahead_idx == 0 and self.optimize_lm_head_only_at_start:
+ loss_logits = initial_loss_logits
+ else:
+ loss_logits = logits
+ shift_logits = loss_logits[..., shift_amount:-1, :].contiguous()
+ shift_labels = labels[..., 1 + shift_amount:].contiguous()
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss(reduction="none")
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
+ shift_labels = shift_labels.view(-1).clone()
+ # Enable model parallelism
+ shift_labels[shift_labels == self.tokenizer.pad_token_id] = -100
+ shift_labels = shift_labels.to(shift_logits.device)
+ loss = loss_fct(shift_logits, shift_labels)
+ if not self.comparison_mode and not (self.optimize_lm_head_only_at_start and (self.n_ahead + self.n_ahead_talk > 2)) or self.original_mode:
+ loss_list.append(loss)
+ talk_loss_list.append(nonzero_mean(loss).detach())
+
+ if not attempted or self.comparison_mode:
+ rm_hidden_states = hidden_states
+ # print("Magnitude of RM hidden states before RM head", rm_hidden_states.norm())
+ rm_logits = apply_head(self.lm_head, rm_hidden_states, detach=self.optimize_lm_head_only_at_start)
+
+ # don't allow it to predict the thinking token
+ if self.tokenizer_has_start_thought_token:
+ rm_logits[..., self.start_token_id] = -1e10
+ if self.tokenizer_has_end_thought_token:
+ rm_logits[..., self.end_token_id] = -1e10
+ probabilities = rm_logits
+ if probabilities_2d is not None:
+ prev_probabilities_2d = probabilities_2d.clone()
+ probabilities_2d = probabilities.view(-1, probabilities.size(-1))
+
+ did_skip_sampling = skip_sampling
+ skip_sampling = False
+ if ahead_idx == 0 and self.use_start_thought_token:
+ override_token = self.start_token_id
+ elif self.use_thought_prefix and ahead_idx < self.tokenized_thought_prefix.shape[-1]:
+ override_token = self.tokenized_thought_prefix[..., ahead_idx]
+ elif ahead_idx == self.n_ahead - 2 and self.use_end_thought_token:
+ override_token = self.end_token_id
+ else:
+ override_token = None
+ if override_token is not None and self.n_ahead > 1:
+ # always start with the start token
+ probabilities_2d = torch.zeros_like(probabilities_2d)
+ probabilities_2d[:, override_token] = 1.0
+ skip_sampling = True
+ elif ahead_idx >= self.n_ahead - 1:
+ if labels is not None: # we're in the talk phase
+ cur_talk_n = ahead_idx - (self.n_ahead - 1) + 1
+ # print("Setting rm to labels", cur_talk_n, "during", ahead_idx)
+ shift_labels = labels[..., cur_talk_n:].contiguous().to(probabilities_2d.device)
+ padding = torch.full_like(
+ labels[..., :cur_talk_n],
+ self.tokenizer.pad_token_id,
+ dtype=torch.long,
+ device=shift_labels.device
+ )
+ new_rm_tokens = torch.cat(
+ [shift_labels, padding],
+ dim=-1
+ )
+ # convert rm tokens to one-hot
+ probabilities_2d = F.one_hot(new_rm_tokens, num_classes=self.vocab_size).reshape(-1, self.vocab_size).to(probabilities_2d.dtype)
+ skip_sampling = True
+ else:
+ continue
+ temperature = self.gumbel_temperature if self.training else 0.001
+ prev_sample_probs = sample_probs
+ sample_probs = probabilities_2d
+ if ahead_idx < self.n_ahead - 1 and not skip_sampling:
+ probabilities_2d = F.gumbel_softmax(sample_probs, tau=temperature, hard=True, dim=-1)
+ if self.gumbel_detach:
+ probabilities_2d = probabilities_2d.detach()
+ sampled_token_history.append(probabilities_2d.argmax(dim=-1).detach().cpu())
+ # convert rm logits directly to embeddings
+ contains_start = self.use_start_thought_token and (probabilities_2d[..., self.start_token_id].sum() > 0)
+ contains_end = self.use_end_thought_token and (probabilities_2d[..., self.end_token_id].sum() > 0)
+ contains_thought = contains_start or contains_end
+
+ if not contains_thought:
+ with torch.set_grad_enabled(not self.train_only_thinking_embedding):
+ inputs_embeds = probabilities_2d @ (self.model.embed_tokens.weight.to(probabilities.device).to(probabilities.dtype))
+ else:
+ thought_id = self.start_token_id if contains_start else self.end_token_id
+ cur_thought_embedding = start_embedding if contains_start else end_embedding
+ if self.use_reparam_for_thought_embeddings:
+ inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype)
+ inputs_embeds = inputs_embeds * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0]
+ if contains_start:
+ sampled_start = inputs_embeds.clone().detach()
+ else:
+ sampled_end = inputs_embeds.clone().detach()
+ else:
+ inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1)
+ inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype)
+ inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype)
+
+ if len(attention_mask.shape) == 2:
+ breakpoint()
+ else:
+ original_attention = attention_mask[..., :attention_mask.shape[-2]]
+ if self.use_upper_triangular:
+ new_attention = original_attention
+ else:
+ original_attention = original_attention == attention_mask.max()
+ # because eye isn't implemented for BF16, we need to handle the case
+ if not attention_mask.dtype == torch.bfloat16:
+ new_attention = torch.eye(
+ seq_len, dtype=attention_mask.dtype, device=attention_mask.device
+ )
+ else:
+ new_attention = torch.eye(
+ seq_len, dtype=torch.float32, device=attention_mask.device
+ ).to(attention_mask.dtype)
+
+ new_attention = new_attention.view(1, 1, seq_len, seq_len).repeat(input_ids.shape[0], 1, 1, 1)
+ new_attention = new_attention * original_attention
+ new_attention[new_attention == 0] = attention_mask.min()
+ new_attention[new_attention == 1] = attention_mask.max()
+ attention_mask = torch.cat([attention_mask, new_attention], dim=-1)
+ past_key_values = outputs.past_key_values
+ position_ids = position_ids + 1
+
+ if labels is not None and (self.n_ahead > 1 or not self.base_original_mode):
+ # Shift so that tokens < n predict n
+ # logits: abcdef -> bcdef? -> cdef??
+ # labels: abcdef -> ?bcdef -> ??cdef
+ if ahead_idx == 0 and self.optimize_lm_head_only_at_start:
+ loss_logits = initial_loss_logits
+ else:
+ loss_logits = logits
+ shift_idx = 1 + max(0, ahead_idx - (self.n_ahead - 1))
+ shift_logits = loss_logits[..., :-shift_idx, :].contiguous()
+ shift_labels = labels[..., shift_idx:].contiguous()
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss(reduction="none")
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
+ shift_labels = shift_labels.view(-1)
+ # Enable model parallelism
+ shift_labels = shift_labels.to(shift_logits.device)
+ # if shift_labels.min() == self.tokenizer.pad_token_id:
+ shift_labels = torch.where(shift_labels == self.tokenizer.pad_token_id, -100, shift_labels)
+ unreduced_loss = loss_fct(shift_logits, shift_labels)
+ if torch.any(unreduced_loss != unreduced_loss):
+ raise ValueError("NaN loss")
+ unreduced_loss = unreduced_loss.reshape(logits.shape[0], -1)
+ loss_list.append(unreduced_loss)
+
+
+ if self.use_policy_loss and ahead_idx > 0 and (ahead_idx > 1 or not self.use_start_thought_token):
+ # we treat the change in loss as the reward
+ previous_loss = loss_list[-2]
+ # for example, suppose n_ahead = 3 and n_ahead_talk = 2
+ # note that we end at self.n_ahead + self.n_ahead_talk - 2
+ # in this case, 5 - 2 = 3, so we end at ahead_idx = 3
+ # we also predict the next token at ahead_idx = 2
+ # when we get to ahead_idx = 2, we predict ahead
+ # so we shift by 1
+ # note that this is ahead_idx = n_ahead - 1
+ # when we get to ahead_idx = 3, we predict ahead
+ # so we shift by 2
+ # note that this is ahead_idx = n_ahead
+ if ahead_idx < self.n_ahead - 1:
+ shift_amount = 0
+ original_dqn_reward = (previous_loss - unreduced_loss).detach()
+ if self.first_and_last_mode:
+ original_dqn_reward = original_dqn_reward * 0.0
+ else:
+ # logits vs cur_policy_shift_logits
+ # let's look at rm_logits and prev_rm_logits
+ shift_amount = max(0, ahead_idx - (self.n_ahead - 1))
+ # let's say shift_amount = 2
+ # abcdefg -> bcdefg? -> cdefg??
+ # logits = [a b]c d e f[g]
+ # labels = [a b c]d e f g
+ cur_policy_shift_logits = initial_loss_logits[..., shift_amount:-1, :].contiguous().detach()
+ cur_policy_shift_labels = labels[..., 1 + shift_amount:].contiguous()
+ # Flatten the tokens
+ cur_policy_loss_fct = CrossEntropyLoss(reduction="none")
+ cur_policy_shift_logits = cur_policy_shift_logits.view(-1, self.config.vocab_size)
+ cur_policy_shift_labels = cur_policy_shift_labels.view(-1).clone()
+ # Enable model parallelism
+ cur_policy_shift_labels[cur_policy_shift_labels == self.tokenizer.pad_token_id] = -100
+ cur_policy_shift_labels = cur_policy_shift_labels.to(cur_policy_shift_labels.device)
+ cur_policy_reward_base_loss = loss_fct(
+ cur_policy_shift_logits, cur_policy_shift_labels.to(cur_policy_shift_logits.device)
+ ).reshape(logits.shape[0], -1)
+ original_dqn_reward = cur_policy_reward_base_loss.detach() - unreduced_loss
+
+ if not did_skip_sampling:
+ nonzero_indices = prev_probabilities_2d.nonzero()
+ action_loglikelihoods = F.log_softmax(prev_sample_probs / self.reinforce_temperature, dim=-1)[nonzero_indices[:, 0], nonzero_indices[:, 1]]
+ action_loglikelihoods_2d = action_loglikelihoods.reshape(batch_size, -1)[:, :-1 - shift_amount]
+ action_loglikelihoods_list.append(action_loglikelihoods_2d)
+ if policy_reward is None:
+ policy_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)]
+ else:
+ if self.n_ahead_talk > shift_amount:
+ added_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)]
+ else:
+ added_reward = original_dqn_reward
+ policy_reward += added_reward
+
+ if self.use_policy_loss and ahead_idx == self.n_ahead + self.n_ahead_talk - 2:
+ # only compute during the thinking phase
+ if self.use_reparam_for_thought_embeddings and (self.use_start_thought_token or self.use_end_thought_token):
+ # sampled_start, sampled_end
+ # calculate the log likelihood of the start and end embeddings sampled from a multivariate normal distribution
+ # with mean start_embedding[0] and standard deviation start_embedding[1]
+ if self.use_start_thought_token:
+ exp_start_std = torch.exp(start_embedding[1])
+ start_loglikelihood = -0.5 * (sampled_start.detach() - start_embedding[0]) ** 2 / exp_start_std ** 2 - start_embedding[1] - 0.5 * math.log(2 * math.pi)
+ start_loglikelihood = start_loglikelihood.mean(dim=-1)
+ if self.use_end_thought_token:
+ exp_end_std = torch.exp(end_embedding[1])
+ end_loglikelihood = -0.5 * (sampled_end.detach() - end_embedding[0]) ** 2 / exp_end_std ** 2 - end_embedding[1] - 0.5 * math.log(2 * math.pi)
+ end_loglikelihood = end_loglikelihood.mean(dim=-1)
+ # we use the mean instead of the sum to prevent dependence on the dimensionality of the embeddings
+ if self.use_end_thought_token and self.use_policy_loss_for_end_thought:
+ action_loglikelihoods_list.append(end_loglikelihood)
+ if self.use_start_thought_token:
+ action_loglikelihoods_list.append(start_loglikelihood)
+
+ if ahead_idx == self.n_ahead + self.n_ahead_talk - 2 and self.eval_mode:
+ with torch.no_grad():
+ # calculate the 0.75 quantile of the rewards
+ filtered_tokens = input_ids[:, :policy_reward.shape[-1]].cpu().detach().numpy().flatten()
+ filtered_tokens_mask = filtered_tokens != self.tokenizer.pad_token_id
+ filtered_tokens = filtered_tokens[filtered_tokens_mask]
+ filtered_rewards = policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten()
+ filtered_rewards = filtered_rewards[filtered_tokens_mask]
+
+ abs_reward_list = np.abs(policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten())
+ abs_reward_list = abs_reward_list[filtered_tokens_mask]
+ medium_quantile = np.quantile(abs_reward_list, 0.5)
+ upper_quantile = np.quantile(abs_reward_list, 0.95)
+
+ save_tokens_with_rewards_to_pdf(
+ filtered_tokens,
+ [0] + filtered_rewards.tolist(),
+ self.tokenizer,
+ output_file=f"texts/rewards_talk_{self.n_ahead_talk}_{self.training_steps}.pdf",
+ eps=medium_quantile,
+ eps2=upper_quantile,
+ )
+
+ def plot_kde(data, losses):
+ sns.set(style="whitegrid")
+ # Create the KDE plot
+ sns.kdeplot(data, fill=True)
+ # Set the plot title and labels
+ plt.title("KDE Plot")
+ plt.xlabel("Value")
+ plt.ylabel("Density")
+ # Save the plot
+ plt.savefig(f"texts/kde_talk_{self.n_ahead_talk}_{self.training_steps}.pdf")
+ # Close the plot
+ plt.close()
+
+ # Step 1: Create a base color palette
+ base_colors = sns.color_palette("light:#5A9", n_colors=256) # More colors for a smoother gradient
+ base_cmap = LinearSegmentedColormap.from_list("log_light", base_colors)
+ log_norm = LogNorm(vmin=1e-3, vmax=10)
+
+ sns.kdeplot(x=data, y=losses, fill=True, levels=20, norm=log_norm, cut=0, linewidths=0)
+ # limit y to 0 to 25 and x to -1 to 1
+ plt.xlim(-1, 1)
+ plt.ylim(0, 25)
+ plt.savefig(f"texts/jointer_talk_{self.n_ahead_talk}_{self.training_steps}.pdf")
+ plt.close()
+
+ self.all_rewards.extend(filtered_rewards)
+ self.all_unreduced_losses.extend(unreduced_loss[:, :-1].flatten()[filtered_tokens_mask].float().flatten().cpu().detach().numpy())
+ plot_kde(self.all_rewards, self.all_unreduced_losses)
+
+ for action_loglikelihoods_2d in action_loglikelihoods_list:
+ train_policy_reward = policy_reward
+
+ # discard rewards below the mean
+ if self.trice_mode and self.n_passes > 1:
+ batched_policy_reward = train_policy_reward.reshape(-1, self.n_passes, train_policy_reward.shape[-1])
+ # average over the passes
+ train_policy_reward = batched_policy_reward - batched_policy_reward.mean(dim=1, keepdim=True)
+ train_policy_reward = train_policy_reward.reshape(-1, train_policy_reward.shape[-1])
+
+ if self.subtract_mean_reward:
+ train_policy_reward = train_policy_reward - train_policy_reward.mean()
+ if self.remove_negative_rewards:
+ fixed_policy_reward = train_policy_reward.detach().clamp(min=0)
+ else:
+ fixed_policy_reward = train_policy_reward.detach()
+ actor_loss = -fixed_policy_reward * action_loglikelihoods_2d[:, :policy_reward.shape[-1]].to(policy_reward.device)
+ if action_loglikelihoods_2d.mean() < -1e4 and not self.use_policy_loss_just_for_thoughts:
+ # This will only happen when we force the next token to be the end of thought token
+ break
+ dqn_loss_list.append(actor_loss.mean())
+
+ if loss_list:
+ if self.first_and_last_mode:
+ loss = sum(
+ self.loss_mean(loss_list[-(i + 1)]) for i in range(self.n_ahead_talk)
+ ) * (1 - self.original_loss_weight) / self.n_ahead_talk
+ loss = loss + self.loss_mean(loss_list[0]) * self.original_loss_weight
+ # Let's NaN out the others
+ # e.g. if n_ahead_talk = 2 and the list is 5 long, we want to NaN out 1, 2 but keep 0, 3, 4
+ for i in range(1, len(loss_list) - self.n_ahead_talk):
+ loss_list[i] = loss_list[i] * math.nan
+ elif self.first_only:
+ loss = self.loss_mean(loss_list[0])
+ elif self.final_only_mode:
+ loss = sum(
+ self.loss_mean(loss_list[-i]) for i in range(1, self.n_ahead_talk + 1)
+ ) / self.n_ahead_talk
+ else:
+ loss = None
+ for i in range(len(loss_list)):
+ cur_loss = self.loss_mean(loss_list[i])
+ if loss is not None:
+ loss = loss + cur_loss.to(loss.device)
+ else:
+ loss = cur_loss
+ loss = loss / len(loss_list)
+
+ loss = loss * self.base_loss_beta
+
+ if dqn_loss_list:
+ dqn_loss = sum(dqn_loss_list) / len(dqn_loss_list)
+ if self.include_policy_loss:
+ if loss is not None:
+ loss += dqn_loss * self.policy_loss_beta
+ else:
+ loss = dqn_loss * self.policy_loss_beta
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return (loss,) + output if loss is not None else output
+
+ base_log_dict = {
+ f"loss_{i}": nonzero_mean(loss_list[i]) for i in range(len(loss_list))
+ }
+
+ if loss is not None:
+ base_log_dict["loss_train"] = loss.item()
+
+ for loss_key, loss_val in base_log_dict.items():
+ log_dict[loss_key] += loss_val / self.n_tokens_print
+
+ if self.use_policy_loss and policy_reward is not None:
+ log_dict["policy_loss"] += dqn_loss / self.n_tokens_print
+ log_dict["policy_reward"] += policy_reward.mean() / self.n_tokens_print
+
+ if not loss_list:
+ if loss is not None:
+ log_dict["loss_0"] += loss / self.n_tokens_print
+ else:
+ log_dict["loss_final"] += nonzero_mean(loss_list[-1]) / self.n_tokens_print
+ log_dict["loss_talk"] += sum(nonzero_mean(cur_loss_item) for cur_loss_item in loss_list[-self.n_ahead_talk:]) / self.n_ahead_talk / self.n_tokens_print
+
+ # also log relative losses to loss_0
+ if loss_list:
+ for i in range(len(loss_list)):
+ talk_idx = min(max(i - (self.n_ahead - 1), 0), len(talk_loss_list) - 1)
+ if not talk_loss_list:
+ cur_talk_loss = nonzero_mean(loss_list[0])
+ else:
+ cur_talk_loss = talk_loss_list[talk_idx]
+ log_dict[f"rel_loss_{i}"] += (nonzero_mean(loss_list[i]) - cur_talk_loss) / self.n_tokens_print
+ if self.training:
+ self.training_steps += 1
+ try:
+ # if self.training_steps % (self.gradient_accumulation_steps * 256) == 0:
+ if self.wandb_enabled:
+ if self.training_steps % (self.n_tokens_print) == 0 or not self.training:# and "0" in str(loss.device):
+ if not self.training:
+ new_log_dict = {}
+ for key in list(log_dict.keys()):
+ new_log_dict["eval_" + key] = log_dict[key]
+ log_dict = new_log_dict
+ log_dict["training_steps"] = self.training_steps
+ log_dict["batch_size"] = batch_size
+ log_dict["example_steps"] = self.training_steps * batch_size * self.gradient_accumulation_steps
+ if self.n_ahead > 1:
+ log_dict["compute_steps"] = self.training_steps * batch_size * (self.n_ahead + self.n_ahead_talk - 1) * self.gradient_accumulation_steps
+ else: # There's no overhead for talk tokens if there's no thinking
+ log_dict["compute_steps"] = self.training_steps * batch_size * self.gradient_accumulation_steps
+ # remove all nans
+ for key in list(log_dict.keys()):
+ if log_dict[key] != log_dict[key]:
+ del log_dict[key]
+ if self.training:
+ wandb.log(log_dict)
+ if self.training:
+ self.log_dict = defaultdict(int)
+ else:
+ self.eval_log_dict = defaultdict(int)
+ except Exception as e:
+ pass
+
+ if not self.training:
+ self.n_ahead_talk = n_ahead_talk_to_restore
+ self.n_passes = n_passes_to_restore
+ return CausalLMOutputWithPast(
+ loss=loss if loss is not None else None,
+ logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
+ def forward_quiet(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, QuietForCausalLM
+
+ >>> model = QuietForCausalLM.from_pretrained("quietai/Quiet-7B-v0.1")
+ >>> tokenizer = AutoTokenizer.from_pretrained("quietai/Quiet-7B-v0.1")
+
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
+
+ >>> # Generate
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
+ ```"""
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ outputs = self.model(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=True,
+ )
+ hidden_states = outputs.last_hidden_state
+ logits = self.lm_head(hidden_states)
+
+ thought_ids, thought_embeddings = self._generate_thoughts(hidden_states, max_length=self.config.thought_length)
+ thought_hidden_states = self.model(inputs_embeds=thought_embeddings).last_hidden_state
+
+ # Compute thought logits
+ thought_logits = self.lm_head(thought_hidden_states)
+
+ # Mix base and thought logits
+ mixed_logits = logits.unsqueeze(1) + self.mixing_head(thought_logits)
+ mixed_logits = mixed_logits.view(-1, mixed_logits.size(-1))
+
+ loss = None
+ if labels is not None:
+ # Shift so that tokens < n predict n
+ shift_logits = mixed_logits[..., :-1, :].contiguous()
+ shift_labels = labels[..., 1:].contiguous()
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
+
+ if self.use_policy_loss:
+ rewards = loss.detach().unsqueeze(1).repeat(1, self.max_thoughts)
+ if self.remove_negative_rewards:
+ rewards = torch.clamp(rewards, min=0)
+ policy_loss = self.calculate_policy_loss(thought_ids, rewards)
+ loss = loss + policy_loss
+ else:
+ loss = None
+
+ if not return_dict:
+ output = (mixed_logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return CausalLMOutputWithPast(
+ loss=loss if loss is not None else None,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
+ def forward_legacy(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, MistralForCausalLM
+
+ >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
+ >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
+
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
+
+ >>> # Generate
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
+ ```"""
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ outputs = self.model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ cache_position=cache_position,
+ )
+
+ hidden_states = outputs[0]
+ logits = self.lm_head(hidden_states)
+ logits = logits.float()
+
+ loss = None
+ if labels is not None:
+ # Shift so that tokens < n predict n
+ shift_logits = logits[..., :-1, :].contiguous()
+ shift_labels = labels[..., 1:].contiguous()
+ # Flatten the tokens
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
+ shift_labels = shift_labels.view(-1)
+ # Ensure tensors are on the same device
+ shift_labels = shift_labels.to(shift_logits.device)
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(shift_logits, shift_labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return (loss,) + output if loss is not None else output
+
+ return CausalLMOutputWithPast(
+ loss=loss,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def self_extend_forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Cache] = None,
+ output_attentions: bool = False,
+ use_cache: bool = False,
+ padding_mask: Optional[torch.LongTensor] = None,
+ group_size_1: Optional[float] = 8,
+ group_size_2: Optional[float] = 2048,
+ **kwargs,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ if "padding_mask" in kwargs:
+ warnings.warn(
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
+ )
+ bsz, q_len, _ = hidden_states.size()
+
+ query_states = self.q_proj(hidden_states)
+ key_states = self.k_proj(hidden_states)
+ value_states = self.v_proj(hidden_states)
+
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+
+ kv_seq_len = key_states.shape[-2]
+ if past_key_value is not None:
+ if self.layer_idx is None:
+ raise ValueError(
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
+ "with a layer index."
+ )
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
+
+
+ if past_key_value is not None:
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
+
+ query_position_ids = position_ids
+ key_position_ids = torch.arange(kv_seq_len, dtype=position_ids.dtype).to(query_position_ids.device).view(bsz, kv_seq_len)
+
+
+ neighbor_query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin, query_position_ids)
+ _, neighbor_key_states = apply_rotary_pos_emb(None, key_states, cos, sin, key_position_ids)
+ _re_group_size_2 = 0 if position_ids.max() < group_size_2 else group_size_2 # in case that, the smallest q position, g2-g2//g1 exceed the max position
+ group_query_states, _ = apply_grouped_rotary_pos_emb(query_states, None, cos, sin, query_position_ids, g_size_1=group_size_1, g_size_2=_re_group_size_2)
+ _, group_key_states = apply_grouped_rotary_pos_emb(None, key_states, cos, sin, key_position_ids, g_size_1=group_size_1, g_size_2=_re_group_size_2)
+
+
+ group_key_states = repeat_kv(group_key_states, self.num_key_value_groups)
+ neighbor_key_states = repeat_kv(neighbor_key_states, self.num_key_value_groups)
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
+
+ neighbor_attn_weights = torch.matmul(neighbor_query_states, neighbor_key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
+ group_attn_weights = torch.matmul(group_query_states, group_key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
+
+
+ if group_attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
+ raise ValueError(
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
+ f" {group_attn_weights.size()}"
+ )
+
+ if attention_mask is not None:
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
+ )
+ group_attn_weights = group_attn_weights + attention_mask
+ neighbor_attn_weights = neighbor_attn_weights + attention_mask
+
+
+ if q_len == 1:
+ neighbor_attention_mask = torch.zeros((q_len, kv_seq_len), device=neighbor_attn_weights.device)
+ neighbor_attention_mask[:, -group_size_2:] = 1
+ elif q_len == kv_seq_len:
+ neighbor_attention_mask = torch.ones((q_len, kv_seq_len), device=neighbor_attn_weights.device)
+ neighbor_attention_mask = torch.tril(neighbor_attention_mask)
+ if q_len-group_size_2 > 0:
+ group_attention_mask = torch.tril(torch.ones((q_len-group_size_2, kv_seq_len-group_size_2), device=group_attn_weights.device))
+ neighbor_attention_mask[group_size_2:, :-group_size_2] -= group_attention_mask
+
+ else:
+ raise ValueError("q_len should be 1 or seq_len.")
+
+
+ neighbor_attention_mask = neighbor_attention_mask.bool()
+ attn_weights = torch.where(neighbor_attention_mask, neighbor_attn_weights, group_attn_weights)
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
+ attn_output = torch.matmul(attn_weights, value_states)
+
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.transpose(1, 2).contiguous()
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
+
+ attn_output = self.o_proj(attn_output)
+
+ if not output_attentions:
+ attn_weights = None
+
+ return attn_output, attn_weights, past_key_value
+
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
+ def forwardStar(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, MistralForCausalLM
+
+ >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
+ >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
+
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
+
+ >>> # Generate
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
+ ```"""
+ log_dict = self.log_dict if self.training else self.eval_log_dict
+
+ if self.training and self.kill_after is not None and self.training_steps // self.gradient_accumulation_steps > self.kill_after:
+ raise ValueError("Killed after")
+
+ if not self.training:
+ n_ahead_talk_to_restore = self.n_ahead_talk
+ n_passes_to_restore = self.n_passes
+ self.n_ahead_talk = 1
+ self.n_passes = 1
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ assert self.cumulative_residual or self.clever_residual or self.skip_residual or self.no_residual
+ assert not (self.skip_residual and self.use_policy_loss)
+
+ if self.tokenized_thought_prefix is None and self.use_thought_prefix:
+ self.tokenized_thought_prefix = self.tokenizer(self.thought_prefix, return_tensors="pt", add_special_tokens=False)["input_ids"]
+
+ def apply_head(head, states, detach=False):
+ if detach:
+ head_weight = head.weight.detach()
+ else:
+ head_weight = head.weight
+ head_weight = head_weight.to(states.device)
+ return (head_weight @ states.transpose(-1, -2)).transpose(-1, -2).contiguous()
+
+ def idx_if_sequential(head, idx=0):
+ if isinstance(head, nn.Sequential) or isinstance(head, nn.ModuleList):
+ return idx_if_sequential(head[idx], idx=idx)
+ return head
+
+ def none_repeat_interleave(x, n):
+ if x is None:
+ return x
+ return x.repeat_interleave(n, dim=0)
+
+ if self.n_passes > 1:
+ input_ids = none_repeat_interleave(input_ids, self.n_passes)
+ attention_mask = none_repeat_interleave(attention_mask, self.n_passes)
+ position_ids = none_repeat_interleave(position_ids, self.n_passes)
+ inputs_embeds = none_repeat_interleave(inputs_embeds, self.n_passes)
+ labels = none_repeat_interleave(labels, self.n_passes)
+ if past_key_values is not None:
+ past_key_values = [none_repeat_interleave(p, self.n_passes) for p in past_key_values]
+ cur_token_indices = torch.arange(input_ids.shape[1], device=input_ids.device)
+
+ self.tokenizer_has_start_thought_token = True
+ self.tokenizer_has_end_thought_token = True
+ if self.start_token_id is None:
+ self.start_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
+ if self.start_token_id == 0:
+ self.start_token_id = self.tokenizer.bos_token_id
+ self.tokenizer_has_start_thought_token = False
+ elif self.use_start_thought_token:
+ # base_start_id = self.tokenizer.convert_tokens_to_ids(self.initial_start_token)
+ base_start_id = self.tokenizer.encode(self.initial_start_token, add_special_tokens=False)[0]
+ if self.initialize_thought_embedding_to_normal:
+ self.start_embedding.data = torch.zeros_like(self.start_embedding.data)
+ else:
+ self.start_embedding.data[0] = self.model.embed_tokens.weight.data[base_start_id].clone().detach() / self.embedding_scale
+ self.start_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale)
+ if self.end_token_id is None:
+ self.end_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
+ if self.end_token_id == 0:
+ self.end_token_id = self.tokenizer.eos_token_id
+ self.tokenizer_has_end_thought_token = False
+ elif self.use_end_thought_token:
+ # base_end_id = self.tokenizer.convert_tokens_to_ids(self.initial_end_token)
+ base_end_id = self.tokenizer.encode(self.initial_end_token, add_special_tokens=False)[0]
+ if self.initialize_thought_embedding_to_normal:
+ self.end_embedding.data = torch.zeros_like(self.end_embedding.data)
+ else:
+ self.end_embedding.data[0] = self.model.embed_tokens.weight.data[base_end_id].clone().detach() / self.embedding_scale
+ self.end_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale)
+
+ if not self.rm_initialized and (self.n_ahead > 1 or not self.base_original_mode):
+ self.rm_initialized = True
+ if not self.use_shallow_talk:
+ head = self.talk_head[0]
+ cur_head = head[-1] if isinstance(head, nn.Sequential) else head
+ talk_input_dim = cur_head.weight.data.shape[1]
+ talk_output_dim = 1 if self.use_weighted_talk_head else self.lm_head.weight.data.shape[0]
+ cur_head.weight.data = torch.zeros(talk_output_dim, talk_input_dim, device=cur_head.weight.device, dtype=cur_head.weight.dtype)
+ else:
+ # convert to identity transform
+ def lambda_transform(cur_head):
+ if cur_head.weight.data.shape[0] != cur_head.weight.data.shape[1]:
+ return torch.cat([
+ torch.eye(
+ cur_head.weight.data.shape[0],
+ device=cur_head.weight.device,
+ dtype=cur_head.weight.dtype
+ ),
+ torch.zeros(
+ cur_head.weight.data.shape[0],
+ cur_head.weight.data.shape[1] - cur_head.weight.data.shape[0],
+ device=cur_head.weight.device,
+ dtype=cur_head.weight.dtype
+ )], dim=1)
+ return torch.eye(
+ cur_head.weight.data.shape[0],
+ device=cur_head.weight.device,
+ dtype=cur_head.weight.dtype
+ )
+ if isinstance(self.talk_head[0], nn.Sequential):
+ for cur_head in self.talk_head[0]:
+ # if it has weights
+ if hasattr(cur_head, "weight"):
+ cur_head.weight.data = lambda_transform(cur_head)
+ else:
+ self.talk_head[-1].weight.data = lambda_transform(self.talk_head[0])
+
+ loss = None
+ prev_rm_tokens = None
+ cur_rm_tokens = None
+ prev_rm_logits = None
+ prev_sample_probs = None
+ did_skip_sampling = None
+ skip_sampling = None
+ sample_probs = None
+ hidden_states = None
+ logits = None
+ talk_kl_penalty = None
+ rm_logits = None
+ residual_logits = None
+ probabilities_2d = None
+ prev_probabilities_2d = None
+ policy_reward = None
+ logits_to_output = None
+ batch_size, seq_len = input_ids.shape
+ base_input_ids = input_ids.clone()
+ loss_list = []
+ dqn_loss_list = []
+ sampled_token_history = []
+ sample_probs_history = []
+ action_loglikelihoods_list = []
+
+ if self.use_end_thought_token or self.use_start_thought_token:
+ if not self.use_reparam_for_thought_embeddings:
+ start_embedding = self.start_embedding[0].unsqueeze(0) * self.embedding_scale
+ end_embedding = self.end_embedding[0].unsqueeze(0) * self.embedding_scale
+ else:
+ start_embedding = self.start_embedding * self.embedding_scale
+ end_embedding = self.end_embedding * self.embedding_scale
+ base_embeddings = self.model.embed_tokens.weight
+ if self.train_only_thinking_embedding:
+ base_embeddings = base_embeddings.detach()
+ # # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ fwd_iters = 1 if self.original_mode else self.n_ahead + self.n_ahead_talk - 1
+ for ahead_idx in range(fwd_iters):
+ past_key_values_length = 0
+ if past_key_values is not None:
+ use_legacy_cache = not isinstance(past_key_values, Cache)
+ if use_legacy_cache:
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
+ past_key_values_length = past_key_values.get_usable_length(seq_len)
+
+ if position_ids is None:
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+ position_ids = torch.arange(
+ past_key_values_length, seq_len + past_key_values_length, dtype=torch.long, device=device
+ )
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_len)
+ else:
+ position_ids = position_ids.view(-1, seq_len).long()
+
+ if inputs_embeds is None:
+ contains_start = self.use_start_thought_token and (input_ids == self.start_token_id).any()
+ contains_end = self.use_end_thought_token and (input_ids == self.end_token_id).any()
+ contains_thought = contains_start or contains_end
+ if contains_thought:
+ thought_id = self.start_token_id if contains_start else self.end_token_id
+ cur_thought_embedding = start_embedding if contains_start else end_embedding
+ if self.use_reparam_for_thought_embeddings:
+ inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype)
+ inputs_embeds = inputs_embeds.detach() * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0]
+ if contains_start:
+ sampled_start = inputs_embeds.clone().detach()
+ if contains_end:
+ sampled_end = inputs_embeds.clone().detach()
+ else:
+ inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1)
+ else:
+ with torch.set_grad_enabled(not self.train_only_thinking_embedding):
+ inputs_embeds = self.model.embed_tokens(input_ids)
+
+ if self.n_ahead != 1 or self.n_ahead_talk != 1 or self.comparison_mode:
+ if attention_mask is None:
+ base_attention_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=0).to(input_ids.device)
+ base_attention_mask = base_attention_mask.view(1, 1, seq_len, seq_len)
+ base_attention_mask = base_attention_mask.repeat(input_ids.shape[0], 1, 1, 1)
+ attention_mask = base_attention_mask
+ breakpoint()
+ elif attention_mask.dim() == 2:
+ if seq_len + past_key_values_length != attention_mask.shape[-1]:
+ breakpoint()
+ attention_mask = torch.cat(
+ [torch.ones((attention_mask.shape[0], past_key_values_length), dtype=attention_mask.dtype, device=attention_mask.device), attention_mask],
+ dim=-1
+ )
+ # # if the attention mask
+ attention_mask = _prepare_4d_causal_attention_mask(
+ attention_mask,
+ (batch_size, seq_len),
+ inputs_embeds,
+ past_key_values_length,
+ sliding_window=self.config.sliding_window,
+ )
+
+ outputs = self.model(
+ # input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ prev_hidden_states = hidden_states
+ hidden_states = outputs[0]
+ prev_rm_logits = rm_logits # for policy gradient
+ prev_rm_tokens = cur_rm_tokens # for policy gradient
+
+ if ahead_idx == 0:
+ hidden_states_lm = hidden_states
+ logits = self.lm_head(hidden_states_lm)
+ base_hidden_states = hidden_states.clone()
+ initial_loss_logits = logits.clone()
+ if self.optimize_lm_head_only_at_start or self.optimize_model_only_at_start:
+ logits = logits.detach()
+ base_hidden_states = base_hidden_states.detach()
+ if self.optimize_model_only_at_start:
+ hidden_states = hidden_states.detach()
+ base_logits = logits.clone()
+ else:
+ talk_hidden_states = hidden_states
+ if self.merged_lm_and_talk_heads:
+ assert self.no_residual
+ residual_logits = self.lm_head(hidden_states)
+ talk_hidden_states = hidden_states
+ else:
+ if ahead_idx > self.n_ahead - 1:
+ cur_base_hidden = torch.cat([
+ base_hidden_states[..., ahead_idx - self.n_ahead + 1:, :],
+ base_hidden_states[..., :ahead_idx - self.n_ahead + 1, :]
+ ], dim=-2)
+ else:
+ cur_base_hidden = base_hidden_states
+
+ if self.use_concat_talk_head:
+ # concatenate the hidden states with the original hidden states
+ head_input_hidden_states = torch.cat([cur_base_hidden, talk_hidden_states], dim=-1)
+ else:
+ head_input_hidden_states = talk_hidden_states
+
+ residual_logits = self.talk_head[0](head_input_hidden_states)
+ if self.use_shallow_talk:
+ residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start)
+ residual_logits = residual_logits.to(logits.device)
+ if self.use_weighted_talk_head:
+ # combine the cur_base_hidden with the talk_hidden_states according to the weighted head
+ residual_logits = cur_base_hidden * (1 - residual_logits) + talk_hidden_states * residual_logits
+ residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start)
+
+ assert sum([self.cumulative_residual, self.clever_residual, self.skip_residual, self.no_residual]) == 1
+ if self.clever_residual:
+ if ahead_idx >= self.n_ahead - 1:
+ # get the logits shifted according to the current talk ahead
+ cur_base_logits = torch.cat([
+ base_logits[..., ahead_idx - self.n_ahead + 1:, :],
+ base_logits[..., :ahead_idx - self.n_ahead + 1, :]
+ ], dim=-2)
+ if self.optimize_lm_head_only_at_start:
+ cur_base_logits = cur_base_logits.detach()
+ logits = cur_base_logits + residual_logits
+ else:
+ logits += residual_logits / self.n_ahead
+ elif self.cumulative_residual:
+ if self.residual_talk_head:
+ if ahead_idx < self.n_ahead:
+ logits += residual_logits
+ else:
+ # get the logits shifted according to the current talk ahead
+ cur_base_logits = torch.cat([
+ base_logits[..., ahead_idx - self.n_ahead + 1:, :],
+ base_logits[..., :ahead_idx - self.n_ahead + 1, :]
+ ], dim=-2)
+ if self.optimize_lm_head_only_at_start:
+ cur_base_logits = cur_base_logits.detach()
+ logits = cur_base_logits + residual_logits
+ else:
+ if ahead_idx < self.n_ahead:
+ logits += residual_logits
+ else:
+ logits = residual_logits
+ elif self.skip_residual:
+ if ahead_idx >= self.n_ahead:
+ # get the logits shifted according to the current talk ahead
+ cur_base_logits = torch.cat([
+ base_logits[..., ahead_idx - self.n_ahead + 1:, :],
+ base_logits[..., :ahead_idx - self.n_ahead + 1, :]
+ ], dim=-2)
+ if self.optimize_lm_head_only_at_start:
+ cur_base_logits = cur_base_logits.detach()
+ logits = cur_base_logits
+ elif self.no_residual:
+ logits = residual_logits
+ else:
+ logits = base_logits + residual_logits
+
+ attempted = False
+ talk_loss_list = []
+ if self.original_mode or (self.n_ahead == 1) or (self.comparison_mode and ahead_idx == 0):# or (self.optimize_lm_head_only_at_start and ahead_idx == 0):
+ loss = None
+ attempted = True
+
+ if labels is not None:
+ for shift_amount in range(self.n_ahead_talk):
+ # Shift so that tokens < n predict n
+ # ab[cde]f
+ # abc[def]
+ if ahead_idx == 0 and self.optimize_lm_head_only_at_start:
+ loss_logits = initial_loss_logits
+ else:
+ loss_logits = logits
+ shift_logits = loss_logits[..., shift_amount:-1, :].contiguous()
+ shift_labels = labels[..., 1 + shift_amount:].contiguous()
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss(reduction="none")
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
+ shift_labels = shift_labels.view(-1).clone()
+ # Enable model parallelism
+ shift_labels[shift_labels == self.tokenizer.pad_token_id] = -100
+ shift_labels = shift_labels.to(shift_logits.device)
+ loss = loss_fct(shift_logits, shift_labels)
+ if not self.comparison_mode and not (self.optimize_lm_head_only_at_start and (self.n_ahead + self.n_ahead_talk > 2)) or self.original_mode:
+ loss_list.append(loss)
+ talk_loss_list.append(nonzero_mean(loss).detach())
+
+ if not attempted or self.comparison_mode:
+ rm_hidden_states = hidden_states
+ # print("Magnitude of RM hidden states before RM head", rm_hidden_states.norm())
+ rm_logits = apply_head(self.lm_head, rm_hidden_states, detach=self.optimize_lm_head_only_at_start)
+
+ # don't allow it to predict the thinking token
+ if self.tokenizer_has_start_thought_token:
+ rm_logits[..., self.start_token_id] = -1e10
+ if self.tokenizer_has_end_thought_token:
+ rm_logits[..., self.end_token_id] = -1e10
+ probabilities = rm_logits
+ if probabilities_2d is not None:
+ prev_probabilities_2d = probabilities_2d.clone()
+ probabilities_2d = probabilities.view(-1, probabilities.size(-1))
+
+ did_skip_sampling = skip_sampling
+ skip_sampling = False
+ if ahead_idx == 0 and self.use_start_thought_token:
+ override_token = self.start_token_id
+ elif self.use_thought_prefix and ahead_idx < self.tokenized_thought_prefix.shape[-1]:
+ override_token = self.tokenized_thought_prefix[..., ahead_idx]
+ elif ahead_idx == self.n_ahead - 2 and self.use_end_thought_token:
+ override_token = self.end_token_id
+ else:
+ override_token = None
+ if override_token is not None and self.n_ahead > 1:
+ # always start with the start token
+ probabilities_2d = torch.zeros_like(probabilities_2d)
+ probabilities_2d[:, override_token] = 1.0
+ skip_sampling = True
+ elif ahead_idx >= self.n_ahead - 1:
+ if labels is not None: # we're in the talk phase
+ cur_talk_n = ahead_idx - (self.n_ahead - 1) + 1
+ # print("Setting rm to labels", cur_talk_n, "during", ahead_idx)
+ shift_labels = labels[..., cur_talk_n:].contiguous().to(probabilities_2d.device)
+ padding = torch.full_like(
+ labels[..., :cur_talk_n],
+ self.tokenizer.pad_token_id,
+ dtype=torch.long,
+ device=shift_labels.device
+ )
+ new_rm_tokens = torch.cat(
+ [shift_labels, padding],
+ dim=-1
+ )
+ # convert rm tokens to one-hot
+ probabilities_2d = F.one_hot(new_rm_tokens, num_classes=self.vocab_size).reshape(-1, self.vocab_size).to(probabilities_2d.dtype)
+ skip_sampling = True
+ else:
+ continue
+ temperature = self.gumbel_temperature if self.training else 0.001
+ prev_sample_probs = sample_probs
+ sample_probs = probabilities_2d
+ if ahead_idx < self.n_ahead - 1 and not skip_sampling:
+ probabilities_2d = F.gumbel_softmax(sample_probs, tau=temperature, hard=True, dim=-1)
+ if self.gumbel_detach:
+ probabilities_2d = probabilities_2d.detach()
+ sampled_token_history.append(probabilities_2d.argmax(dim=-1).detach().cpu())
+ # convert rm logits directly to embeddings
+ contains_start = self.use_start_thought_token and (probabilities_2d[..., self.start_token_id].sum() > 0)
+ contains_end = self.use_end_thought_token and (probabilities_2d[..., self.end_token_id].sum() > 0)
+ contains_thought = contains_start or contains_end
+
+ if not contains_thought:
+ with torch.set_grad_enabled(not self.train_only_thinking_embedding):
+ inputs_embeds = probabilities_2d @ (self.model.embed_tokens.weight.to(probabilities.device).to(probabilities.dtype))
+ else:
+ thought_id = self.start_token_id if contains_start else self.end_token_id
+ cur_thought_embedding = start_embedding if contains_start else end_embedding
+ if self.use_reparam_for_thought_embeddings:
+ inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype)
+ inputs_embeds = inputs_embeds * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0]
+ if contains_start:
+ sampled_start = inputs_embeds.clone().detach()
+ else:
+ sampled_end = inputs_embeds.clone().detach()
+ else:
+ inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1)
+ inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype)
+ inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype)
+
+ if len(attention_mask.shape) == 2:
+ breakpoint()
+ else:
+ original_attention = attention_mask[..., :attention_mask.shape[-2]]
+ if self.use_upper_triangular:
+ new_attention = original_attention
+ else:
+ original_attention = original_attention == attention_mask.max()
+ # because eye isn't implemented for BF16, we need to handle the case
+ if not attention_mask.dtype == torch.bfloat16:
+ new_attention = torch.eye(
+ seq_len, dtype=attention_mask.dtype, device=attention_mask.device
+ )
+ else:
+ new_attention = torch.eye(
+ seq_len, dtype=torch.float32, device=attention_mask.device
+ ).to(attention_mask.dtype)
+
+ new_attention = new_attention.view(1, 1, seq_len, seq_len).repeat(input_ids.shape[0], 1, 1, 1)
+ new_attention = new_attention * original_attention
+ new_attention[new_attention == 0] = attention_mask.min()
+ new_attention[new_attention == 1] = attention_mask.max()
+ attention_mask = torch.cat([attention_mask, new_attention], dim=-1)
+ past_key_values = outputs.past_key_values
+ position_ids = position_ids + 1
+
+ if labels is not None and (self.n_ahead > 1 or not self.base_original_mode):
+ # Shift so that tokens < n predict n
+ # logits: abcdef -> bcdef? -> cdef??
+ # labels: abcdef -> ?bcdef -> ??cdef
+ if ahead_idx == 0 and self.optimize_lm_head_only_at_start:
+ loss_logits = initial_loss_logits
+ else:
+ loss_logits = logits
+ shift_idx = 1 + max(0, ahead_idx - (self.n_ahead - 1))
+ shift_logits = loss_logits[..., :-shift_idx, :].contiguous()
+ shift_labels = labels[..., shift_idx:].contiguous()
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss(reduction="none")
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
+ shift_labels = shift_labels.view(-1)
+ # Enable model parallelism
+ shift_labels = shift_labels.to(shift_logits.device)
+ # if shift_labels.min() == self.tokenizer.pad_token_id:
+ shift_labels = torch.where(shift_labels == self.tokenizer.pad_token_id, -100, shift_labels)
+ unreduced_loss = loss_fct(shift_logits, shift_labels)
+ if torch.any(unreduced_loss != unreduced_loss):
+ raise ValueError("NaN loss")
+ unreduced_loss = unreduced_loss.reshape(logits.shape[0], -1)
+ loss_list.append(unreduced_loss)
+
+
+ if self.use_policy_loss and ahead_idx > 0 and (ahead_idx > 1 or not self.use_start_thought_token):
+ # we treat the change in loss as the reward
+ previous_loss = loss_list[-2]
+ # for example, suppose n_ahead = 3 and n_ahead_talk = 2
+ # note that we end at self.n_ahead + self.n_ahead_talk - 2
+ # in this case, 5 - 2 = 3, so we end at ahead_idx = 3
+ # we also predict the next token at ahead_idx = 2
+ # when we get to ahead_idx = 2, we predict ahead
+ # so we shift by 1
+ # note that this is ahead_idx = n_ahead - 1
+ # when we get to ahead_idx = 3, we predict ahead
+ # so we shift by 2
+ # note that this is ahead_idx = n_ahead
+ if ahead_idx < self.n_ahead - 1:
+ shift_amount = 0
+ original_dqn_reward = (previous_loss - unreduced_loss).detach()
+ if self.first_and_last_mode:
+ original_dqn_reward = original_dqn_reward * 0.0
+ else:
+ # logits vs cur_policy_shift_logits
+ # let's look at rm_logits and prev_rm_logits
+ shift_amount = max(0, ahead_idx - (self.n_ahead - 1))
+ # let's say shift_amount = 2
+ # abcdefg -> bcdefg? -> cdefg??
+ # logits = [a b]c d e f[g]
+ # labels = [a b c]d e f g
+ cur_policy_shift_logits = initial_loss_logits[..., shift_amount:-1, :].contiguous().detach()
+ cur_policy_shift_labels = labels[..., 1 + shift_amount:].contiguous()
+ # Flatten the tokens
+ cur_policy_loss_fct = CrossEntropyLoss(reduction="none")
+ cur_policy_shift_logits = cur_policy_shift_logits.view(-1, self.config.vocab_size)
+ cur_policy_shift_labels = cur_policy_shift_labels.view(-1).clone()
+ # Enable model parallelism
+ cur_policy_shift_labels[cur_policy_shift_labels == self.tokenizer.pad_token_id] = -100
+ cur_policy_shift_labels = cur_policy_shift_labels.to(cur_policy_shift_labels.device)
+ cur_policy_reward_base_loss = loss_fct(
+ cur_policy_shift_logits, cur_policy_shift_labels.to(cur_policy_shift_logits.device)
+ ).reshape(logits.shape[0], -1)
+ original_dqn_reward = cur_policy_reward_base_loss.detach() - unreduced_loss
+
+ if not did_skip_sampling:
+ nonzero_indices = prev_probabilities_2d.nonzero()
+ action_loglikelihoods = F.log_softmax(prev_sample_probs / self.reinforce_temperature, dim=-1)[nonzero_indices[:, 0], nonzero_indices[:, 1]]
+ action_loglikelihoods_2d = action_loglikelihoods.reshape(batch_size, -1)[:, :-1 - shift_amount]
+ action_loglikelihoods_list.append(action_loglikelihoods_2d)
+ if policy_reward is None:
+ policy_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)]
+ else:
+ if self.n_ahead_talk > shift_amount:
+ added_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)]
+ else:
+ added_reward = original_dqn_reward
+ policy_reward += added_reward
+
+ if self.use_policy_loss and ahead_idx == self.n_ahead + self.n_ahead_talk - 2:
+ # only compute during the thinking phase
+ if self.use_reparam_for_thought_embeddings and (self.use_start_thought_token or self.use_end_thought_token):
+ # sampled_start, sampled_end
+ # calculate the log likelihood of the start and end embeddings sampled from a multivariate normal distribution
+ # with mean start_embedding[0] and standard deviation start_embedding[1]
+ if self.use_start_thought_token:
+ exp_start_std = torch.exp(start_embedding[1])
+ start_loglikelihood = -0.5 * (sampled_start.detach() - start_embedding[0]) ** 2 / exp_start_std ** 2 - start_embedding[1] - 0.5 * math.log(2 * math.pi)
+ start_loglikelihood = start_loglikelihood.mean(dim=-1)
+ if self.use_end_thought_token:
+ exp_end_std = torch.exp(end_embedding[1])
+ end_loglikelihood = -0.5 * (sampled_end.detach() - end_embedding[0]) ** 2 / exp_end_std ** 2 - end_embedding[1] - 0.5 * math.log(2 * math.pi)
+ end_loglikelihood = end_loglikelihood.mean(dim=-1)
+ # we use the mean instead of the sum to prevent dependence on the dimensionality of the embeddings
+ if self.use_end_thought_token and self.use_policy_loss_for_end_thought:
+ action_loglikelihoods_list.append(end_loglikelihood)
+ if self.use_start_thought_token:
+ action_loglikelihoods_list.append(start_loglikelihood)
+
+ if ahead_idx == self.n_ahead + self.n_ahead_talk - 2 and self.eval_mode:
+ with torch.no_grad():
+ # calculate the 0.75 quantile of the rewards
+ filtered_tokens = input_ids[:, :policy_reward.shape[-1]].cpu().detach().numpy().flatten()
+ filtered_tokens_mask = filtered_tokens != self.tokenizer.pad_token_id
+ filtered_tokens = filtered_tokens[filtered_tokens_mask]
+ filtered_rewards = policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten()
+ filtered_rewards = filtered_rewards[filtered_tokens_mask]
+
+ abs_reward_list = np.abs(policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten())
+ abs_reward_list = abs_reward_list[filtered_tokens_mask]
+ medium_quantile = np.quantile(abs_reward_list, 0.5)
+ upper_quantile = np.quantile(abs_reward_list, 0.95)
+
+ for action_loglikelihoods_2d in action_loglikelihoods_list:
+ train_policy_reward = policy_reward
+
+ # discard rewards below the mean
+ if self.trice_mode and self.n_passes > 1:
+ batched_policy_reward = train_policy_reward.reshape(-1, self.n_passes, train_policy_reward.shape[-1])
+ # average over the passes
+ train_policy_reward = batched_policy_reward - batched_policy_reward.mean(dim=1, keepdim=True)
+ train_policy_reward = train_policy_reward.reshape(-1, train_policy_reward.shape[-1])
+
+ if self.subtract_mean_reward:
+ train_policy_reward = train_policy_reward - train_policy_reward.mean()
+ if self.remove_negative_rewards:
+ fixed_policy_reward = train_policy_reward.detach().clamp(min=0)
+ else:
+ fixed_policy_reward = train_policy_reward.detach()
+ actor_loss = -fixed_policy_reward * action_loglikelihoods_2d[:, :policy_reward.shape[-1]].to(policy_reward.device)
+ if action_loglikelihoods_2d.mean() < -1e4 and not self.use_policy_loss_just_for_thoughts:
+ # This will only happen when we force the next token to be the end of thought token
+ break
+ dqn_loss_list.append(actor_loss.mean())
+
+ if loss_list:
+ if self.first_and_last_mode:
+ loss = sum(
+ self.loss_mean(loss_list[-(i + 1)]) for i in range(self.n_ahead_talk)
+ ) * (1 - self.original_loss_weight) / self.n_ahead_talk
+ loss = loss + self.loss_mean(loss_list[0]) * self.original_loss_weight
+ # Let's NaN out the others
+ # e.g. if n_ahead_talk = 2 and the list is 5 long, we want to NaN out 1, 2 but keep 0, 3, 4
+ for i in range(1, len(loss_list) - self.n_ahead_talk):
+ loss_list[i] = loss_list[i] * math.nan
+ elif self.first_only:
+ loss = self.loss_mean(loss_list[0])
+ elif self.final_only_mode:
+ loss = sum(
+ self.loss_mean(loss_list[-i]) for i in range(1, self.n_ahead_talk + 1)
+ ) / self.n_ahead_talk
+ else:
+ loss = None
+ for i in range(len(loss_list)):
+ cur_loss = self.loss_mean(loss_list[i])
+ if loss is not None:
+ loss = loss + cur_loss.to(loss.device)
+ else:
+ loss = cur_loss
+ loss = loss / len(loss_list)
+
+ loss = loss * self.base_loss_beta
+
+ if dqn_loss_list:
+ dqn_loss = sum(dqn_loss_list) / len(dqn_loss_list)
+ if self.include_policy_loss:
+ if loss is not None:
+ loss += dqn_loss * self.policy_loss_beta
+ else:
+ loss = dqn_loss * self.policy_loss_beta
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return (loss,) + output if loss is not None else output
+
+ base_log_dict = {
+ f"loss_{i}": nonzero_mean(loss_list[i]) for i in range(len(loss_list))
+ }
+
+ if loss is not None:
+ base_log_dict["loss_train"] = loss.item()
+
+ for loss_key, loss_val in base_log_dict.items():
+ log_dict[loss_key] += loss_val / self.n_tokens_print
+
+ if self.use_policy_loss and policy_reward is not None:
+ log_dict["policy_loss"] += dqn_loss / self.n_tokens_print
+ log_dict["policy_reward"] += policy_reward.mean() / self.n_tokens_print
+
+ if not loss_list:
+ if loss is not None:
+ log_dict["loss_0"] += loss / self.n_tokens_print
+ else:
+ log_dict["loss_final"] += nonzero_mean(loss_list[-1]) / self.n_tokens_print
+ log_dict["loss_talk"] += sum(nonzero_mean(cur_loss_item) for cur_loss_item in loss_list[-self.n_ahead_talk:]) / self.n_ahead_talk / self.n_tokens_print
+
+ # also log relative losses to loss_0
+ if loss_list:
+ for i in range(len(loss_list)):
+ talk_idx = min(max(i - (self.n_ahead - 1), 0), len(talk_loss_list) - 1)
+ if not talk_loss_list:
+ cur_talk_loss = nonzero_mean(loss_list[0])
+ else:
+ cur_talk_loss = talk_loss_list[talk_idx]
+ log_dict[f"rel_loss_{i}"] += (nonzero_mean(loss_list[i]) - cur_talk_loss) / self.n_tokens_print
+ if self.training:
+ self.training_steps += 1
+
+ if not self.training:
+ self.n_ahead_talk = n_ahead_talk_to_restore
+ self.n_passes = n_passes_to_restore
+ return CausalLMOutputWithPast(
+ loss=loss if loss is not None else None,
+ logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def prepare_inputs_for_generation(
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
+ ):
+ # Omit tokens covered by past_key_values
+ if past_key_values is not None:
+ if isinstance(past_key_values, Cache):
+ cache_length = past_key_values.get_seq_length()
+ past_length = past_key_values.seen_tokens
+ max_cache_length = past_key_values.get_max_length()
+ else:
+ cache_length = past_length = past_key_values[0][0].shape[2]
+ max_cache_length = None
+
+ # Keep only the unprocessed tokens:
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing inputs_embeds as
+ # input)
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
+ # input_ids based on the past_length.
+ elif past_length < input_ids.shape[1]:
+ input_ids = input_ids[:, past_length:]
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
+
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
+ if (
+ max_cache_length is not None
+ and attention_mask is not None
+ and cache_length + input_ids.shape[1] > max_cache_length
+ ):
+ attention_mask = attention_mask[:, -max_cache_length:]
+
+ position_ids = kwargs.get("position_ids", None)
+ if attention_mask is not None and position_ids is None:
+ # create position_ids on the fly for batch generation
+ position_ids = attention_mask.long().cumsum(-1) - 1
+ position_ids.masked_fill_(attention_mask == 0, 1)
+ if past_key_values:
+ position_ids = position_ids[:, -input_ids.shape[1] :]
+
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
+ if inputs_embeds is not None and past_key_values is None:
+ model_inputs = {"inputs_embeds": inputs_embeds}
+ else:
+ model_inputs = {"input_ids": input_ids}
+
+ model_inputs.update(
+ {
+ "position_ids": position_ids,
+ "past_key_values": past_key_values,
+ "use_cache": kwargs.get("use_cache"),
+ "attention_mask": attention_mask,
+ }
+ )
+ return model_inputs
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
+ )
+ return reordered_past
+
+class MistralSelfExtendForCausalLM(MistralPreTrainedModel):
+ _tied_weights_keys = ["lm_head.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.model = MistralModel(config)
+ self.vocab_size = config.vocab_size
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+ self.max_thoughts = config.max_thoughts
+ self.merged_lm_and_talk_heads = config.merged_lm_and_talk_heads
+ self.use_concat_talk_head = config.use_concat_talk_head
+ self.use_shallow_talk = config.use_shallow_talk
+ self.use_complex_talk_head = config.use_complex_talk_head
+ self.use_weighted_talk_head = config.use_weighted_talk_head
+ # the weighted head will output a single value, so it can't be passed to the lm head
+ assert not (self.use_weighted_talk_head and self.use_shallow_talk)
+
+ self.n_ahead = 1
+ self.n_ahead_talk = 1
+ self.n_passes = 1
+ self.n_tokens_print = 1
+ self.gradient_accumulation_steps = 1
+ self.training_steps = 0
+ self.tokenizer = None
+ self.start_token_id = None
+ self.end_token_id = None
+ self.rm_initialized = False
+ self.residual_talk_head = True
+ self.thought_init_std_scale = 1e-2
+
+ self.final_only_mode = False
+ self.first_and_last_mode = True
+ self.first_only = False
+ self.original_loss_weight = 0.5
+
+ self.cumulative_residual = False
+ self.clever_residual = False
+ self.skip_residual = False
+ self.no_residual = True
+
+ self.optimize_lm_head_only_at_start = False
+ self.optimize_model_only_at_start = False
+
+ if self.optimize_model_only_at_start:
+ raise NotImplementedError
+ self.train_only_thinking_embedding = False
+ self.weighted_embeddings = False
+ self.use_start_thought_token = True
+ self.use_end_thought_token = True
+ self.initialize_thought_embedding_to_normal = False
+ self.initial_start_token = "---"
+ self.initial_end_token = "---"
+ self.output_logits_at_the_end = True
+
+ self.gumbel_temperature = 0.001
+
+ self.use_policy_loss = True
+ self.include_policy_loss = True
+ self.trice_mode = True
+ self.remove_negative_rewards = True
+ self.use_policy_loss_for_end_thought = True
+
+ self.base_original_mode = False
+ self.original_mode = False
+
+ self.thought_prefix = "(Let's think step by step"
+ self.tokenized_thought_prefix = None
+ self.log_dict = defaultdict(int)
+ self.eval_log_dict = defaultdict(int)
+ self.print_final_only = True
+ self.loss_mean = loss_mean
+ self.all_rewards = []
+ self.all_unreduced_losses = []
+ self.kill_after = 100
+
+ self.start_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))
+ self.end_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))
+
+ self.policy_loss_beta = 1e6
+ self.embedding_scale = 1e2
+ self.reinforce_temperature = 3
+ self.base_loss_beta = 1
+
+ # Not used in the paper:
+ self.use_thought_prefix = False
+ self.use_reparam_for_thought_embeddings = False
+ self.use_upper_triangular = False
+ self.subtract_mean_reward = False
+ self.comparison_mode = False
+ self.gumbel_detach = True
+
+ # For visualization
+ self.eval_mode = False
+
+ num_talk = 1
+ talk_input_dim = config.hidden_size if not self.use_concat_talk_head else config.hidden_size * 2
+ if self.use_weighted_talk_head:
+ talk_output_dim = 1
+ else:
+ talk_output_dim = config.hidden_size if self.use_shallow_talk else config.vocab_size
+
+ if not self.merged_lm_and_talk_heads:
+ if self.use_complex_talk_head:
+ self.talk_head = nn.ModuleList([nn.Sequential(
+ nn.Linear(talk_input_dim, config.hidden_size),
+ nn.ReLU(),
+ nn.Linear(config.hidden_size, config.hidden_size),
+ nn.ReLU(),
+ nn.Linear(config.hidden_size, talk_output_dim, bias=False)
+ )])
+ else:
+ self.talk_head = nn.ModuleList([nn.Sequential(
+ nn.Linear(talk_input_dim, talk_output_dim, bias=False)
+ )])
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.embed_tokens = value
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def set_decoder(self, decoder):
+ self.model = decoder
+
+ def get_decoder(self):
+ return self.model
+ def calculate_policy_loss(self, thoughts, rewards):
+ thought_log_probs = []
+ for thought in thoughts:
+ thought_log_prob = self.lm_head(thought).log_softmax(dim=-1)
+ thought_log_probs.append(thought_log_prob)
+
+ thought_log_probs = torch.stack(thought_log_probs, dim=1) # (batch_size, num_thoughts, seq_length, vocab_size)
+ thought_probs = torch.exp(thought_log_probs)
+
+ policy_loss = -torch.mean(thought_log_probs * rewards.unsqueeze(-1).unsqueeze(-1))
+
+ return policy_loss
+
+ def _generate_thoughts(self, hidden_states, max_length):
+ batch_size = hidden_states.size(0)
+ thought_ids = torch.zeros((batch_size, self.config.max_thoughts, max_length), dtype=torch.long, device=hidden_states.device)
+ thought_embeddings = []
+
+ for i in range(self.config.max_thoughts):
+ thought_input_ids = torch.zeros((batch_size, 1), dtype=torch.long, device=hidden_states.device)
+ thought_outputs = self.generate(
+ input_ids=thought_input_ids,
+ max_length=max_length,
+ do_sample=True,
+ top_k=50,
+ top_p=0.95,
+ pad_token_id=self.config.pad_token_id,
+ eos_token_id=self.config.eos_token_id,
+ )
+ thought_ids[:, i, :] = thought_outputs
+ thought_embeddings.append(self.get_input_embeddings()(thought_outputs))
+
+ thought_embeddings = torch.stack(thought_embeddings, dim=1)
+ return thought_ids, thought_embeddings
+
+ @torch.no_grad()
+ def infer(
+ self,
+ input_ids: torch.LongTensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ batch_size, seq_len = input_ids.shape
+
+ # Save the original input_ids and attention_mask for later use
+ original_input_ids = input_ids.clone()
+ original_attention_mask = attention_mask.clone() if attention_mask is not None else None
+
+ # Append the start thought token to the input sequence
+ start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
+ input_ids = torch.cat([input_ids, torch.tensor([[start_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
+ seq_len += 1
+
+ # Update the attention mask
+ if attention_mask is not None:
+ attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
+
+ # Generate the continuation
+ continuation_length = self.n_ahead - 2
+ new_key_values = past_key_values
+
+ start_time = time.time()
+ for continuation_idx in range(continuation_length):
+ outputs = self.model(
+ input_ids=input_ids if continuation_idx == 0 else next_token_id.unsqueeze(-1).to(input_ids.device),
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=new_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=True,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ new_key_values = outputs.past_key_values
+
+ hidden_states = outputs[0]
+
+ logits = self.lm_head(hidden_states)
+ logits = logits[:, -1, :] # Only consider the last token
+
+ # Apply Gumbel-Softmax to the logits
+ next_token_logits = F.gumbel_softmax(logits, tau=self.gumbel_temperature, hard=True, dim=-1)
+ next_token_id = torch.argmax(next_token_logits, dim=-1)
+
+ # Append the generated token to the input sequence
+ input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1).to(input_ids.device)], dim=-1)
+ seq_len += 1
+
+ # Update the attention mask
+ if attention_mask is not None:
+ attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
+
+ # Append the end thought token to the input sequence
+ end_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
+ input_ids = torch.cat([input_ids, torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
+ seq_len += 1
+
+ # Update the attention mask
+ if attention_mask is not None:
+ attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
+
+ # Get the hidden states before and after the thought
+ outputs_before = self.model(
+ input_ids=original_input_ids,
+ attention_mask=original_attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states_before = outputs_before[0][:, -1:, :]
+
+ # two new tokens: last continuation token and end thought token
+ outputs_after = self.model(
+ input_ids=torch.cat([next_token_id.unsqueeze(-1).to(input_ids.device), torch.tensor(end_thought_token_id).unsqueeze(-1).unsqueeze(-1).to(input_ids.device)], dim=-1),
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=new_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states_after = outputs_after[0][:, -1:, :]
+
+ # Apply the talk head to get the mixing weight
+ mixing_weight = self.talk_head[0](torch.cat([hidden_states_before, hidden_states_after], dim=-1))
+
+ # Apply the mixing weight to the hidden states
+ mixed_hidden_states = (1 - mixing_weight) * hidden_states_before + mixing_weight * hidden_states_after
+
+ # Apply the language model head to get the final logits
+ logits = self.lm_head(mixed_hidden_states)
+ return logits
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Cache] = None,
+ output_attentions: bool = False,
+ use_cache: bool = False,
+ padding_mask: Optional[torch.LongTensor] = None,
+ group_size_1: Optional[float] = 8,
+ group_size_2: Optional[float] = 2048,
+ **kwargs,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ if "padding_mask" in kwargs:
+ warnings.warn(
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
+ )
+ bsz, q_len, _ = hidden_states.size()
+
+ query_states = self.q_proj(hidden_states)
+ key_states = self.k_proj(hidden_states)
+ value_states = self.v_proj(hidden_states)
+
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+
+ kv_seq_len = key_states.shape[-2]
+ if past_key_value is not None:
+ if self.layer_idx is None:
+ raise ValueError(
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
+ "with a layer index."
+ )
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
+
+
+ if past_key_value is not None:
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
+
+ query_position_ids = position_ids
+ key_position_ids = torch.arange(kv_seq_len, dtype=position_ids.dtype).to(query_position_ids.device).view(bsz, kv_seq_len)
+
+
+ neighbor_query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin, query_position_ids)
+ _, neighbor_key_states = apply_rotary_pos_emb(None, key_states, cos, sin, key_position_ids)
+ _re_group_size_2 = 0 if position_ids.max() < group_size_2 else group_size_2 # in case that, the smallest q position, g2-g2//g1 exceed the max position
+ group_query_states, _ = apply_grouped_rotary_pos_emb(query_states, None, cos, sin, query_position_ids, g_size_1=group_size_1, g_size_2=_re_group_size_2)
+ _, group_key_states = apply_grouped_rotary_pos_emb(None, key_states, cos, sin, key_position_ids, g_size_1=group_size_1, g_size_2=_re_group_size_2)
+
+
+ group_key_states = repeat_kv(group_key_states, self.num_key_value_groups)
+ neighbor_key_states = repeat_kv(neighbor_key_states, self.num_key_value_groups)
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
+
+ neighbor_attn_weights = torch.matmul(neighbor_query_states, neighbor_key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
+ group_attn_weights = torch.matmul(group_query_states, group_key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
+
+
+ if group_attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
+ raise ValueError(
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
+ f" {group_attn_weights.size()}"
+ )
+
+ if attention_mask is not None:
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
+ )
+ group_attn_weights = group_attn_weights + attention_mask
+ neighbor_attn_weights = neighbor_attn_weights + attention_mask
+
+
+ if q_len == 1:
+ neighbor_attention_mask = torch.zeros((q_len, kv_seq_len), device=neighbor_attn_weights.device)
+ neighbor_attention_mask[:, -group_size_2:] = 1
+ elif q_len == kv_seq_len:
+ neighbor_attention_mask = torch.ones((q_len, kv_seq_len), device=neighbor_attn_weights.device)
+ neighbor_attention_mask = torch.tril(neighbor_attention_mask)
+ if q_len-group_size_2 > 0:
+ group_attention_mask = torch.tril(torch.ones((q_len-group_size_2, kv_seq_len-group_size_2), device=group_attn_weights.device))
+ neighbor_attention_mask[group_size_2:, :-group_size_2] -= group_attention_mask
+
+ else:
+ raise ValueError("q_len should be 1 or seq_len.")
+
+
+ neighbor_attention_mask = neighbor_attention_mask.bool()
+ attn_weights = torch.where(neighbor_attention_mask, neighbor_attn_weights, group_attn_weights)
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
+ attn_output = torch.matmul(attn_weights, value_states)
+
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.transpose(1, 2).contiguous()
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
+
+ attn_output = self.o_proj(attn_output)
+
+ if not output_attentions:
+ attn_weights = None
+
+ return attn_output, attn_weights, past_key_value
+
+ def prepare_inputs_for_generation(
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
+ ):
+ # Omit tokens covered by past_key_values
+ if past_key_values is not None:
+ if isinstance(past_key_values, Cache):
+ cache_length = past_key_values.get_seq_length()
+ past_length = past_key_values.seen_tokens
+ max_cache_length = past_key_values.get_max_length()
+ else:
+ cache_length = past_length = past_key_values[0][0].shape[2]
+ max_cache_length = None
+
+ # Keep only the unprocessed tokens:
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing inputs_embeds as
+ # input)
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
+ # input_ids based on the past_length.
+ elif past_length < input_ids.shape[1]:
+ input_ids = input_ids[:, past_length:]
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
+
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
+ if (
+ max_cache_length is not None
+ and attention_mask is not None
+ and cache_length + input_ids.shape[1] > max_cache_length
+ ):
+ attention_mask = attention_mask[:, -max_cache_length:]
+
+ position_ids = kwargs.get("position_ids", None)
+ if attention_mask is not None and position_ids is None:
+ # create position_ids on the fly for batch generation
+ position_ids = attention_mask.long().cumsum(-1) - 1
+ position_ids.masked_fill_(attention_mask == 0, 1)
+ if past_key_values:
+ position_ids = position_ids[:, -input_ids.shape[1] :]
+
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
+ if inputs_embeds is not None and past_key_values is None:
+ model_inputs = {"inputs_embeds": inputs_embeds}
+ else:
+ model_inputs = {"input_ids": input_ids}
+
+ model_inputs.update(
+ {
+ "position_ids": position_ids,
+ "past_key_values": past_key_values,
+ "use_cache": kwargs.get("use_cache"),
+ "attention_mask": attention_mask,
+ }
+ )
+ return model_inputs
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
+ )
+ return reordered_past
+
+class MistralStarForCausalLM(MistralPreTrainedModel):
+ _tied_weights_keys = ["lm_head.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.model = MistralModel(config)
+ self.vocab_size = config.vocab_size
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+ self.max_thoughts = config.max_thoughts
+ self.merged_lm_and_talk_heads = config.merged_lm_and_talk_heads
+ self.use_concat_talk_head = config.use_concat_talk_head
+ self.use_shallow_talk = config.use_shallow_talk
+ self.use_complex_talk_head = config.use_complex_talk_head
+ self.use_weighted_talk_head = config.use_weighted_talk_head
+ # the weighted head will output a single value, so it can't be passed to the lm head
+ assert not (self.use_weighted_talk_head and self.use_shallow_talk)
+
+ self.n_ahead = 1
+ self.n_ahead_talk = 1
+ self.n_passes = 1
+ self.n_tokens_print = 1
+ self.gradient_accumulation_steps = 1
+ self.training_steps = 0
+ self.tokenizer = None
+ self.start_token_id = None
+ self.end_token_id = None
+ self.rm_initialized = False
+ self.residual_talk_head = True
+ self.thought_init_std_scale = 1e-2
+
+ self.final_only_mode = False
+ self.first_and_last_mode = True
+ self.first_only = False
+ self.original_loss_weight = 0.5
+
+ self.cumulative_residual = False
+ self.clever_residual = False
+ self.skip_residual = False
+ self.no_residual = True
+
+ self.optimize_lm_head_only_at_start = False
+ self.optimize_model_only_at_start = False
+
+ if self.optimize_model_only_at_start:
+ raise NotImplementedError
+ self.train_only_thinking_embedding = False
+ self.weighted_embeddings = False
+ self.use_start_thought_token = True
+ self.use_end_thought_token = True
+ self.initialize_thought_embedding_to_normal = False
+ self.initial_start_token = "---"
+ self.initial_end_token = "---"
+ self.output_logits_at_the_end = True
+
+ self.gumbel_temperature = 0.001
+
+ self.use_policy_loss = True
+ self.include_policy_loss = True
+ self.trice_mode = True
+ self.remove_negative_rewards = True
+ self.use_policy_loss_for_end_thought = True
+
+ self.base_original_mode = False
+ self.original_mode = False
+
+ self.thought_prefix = "(Let's think step by step"
+ self.tokenized_thought_prefix = None
+ self.log_dict = defaultdict(int)
+ self.eval_log_dict = defaultdict(int)
+ self.print_final_only = True
+ self.loss_mean = loss_mean
+ self.all_rewards = []
+ self.all_unreduced_losses = []
+ self.kill_after = 100
+
+ self.start_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))
+ self.end_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))
+
+ self.policy_loss_beta = 1e6
+ self.embedding_scale = 1e2
+ self.reinforce_temperature = 3
+ self.base_loss_beta = 1
+
+ # Not used in the paper:
+ self.use_thought_prefix = False
+ self.use_reparam_for_thought_embeddings = False
+ self.use_upper_triangular = False
+ self.subtract_mean_reward = False
+ self.comparison_mode = False
+ self.gumbel_detach = True
+
+ # For visualization
+ self.eval_mode = False
+
+ num_talk = 1
+ talk_input_dim = config.hidden_size if not self.use_concat_talk_head else config.hidden_size * 2
+ if self.use_weighted_talk_head:
+ talk_output_dim = 1
+ else:
+ talk_output_dim = config.hidden_size if self.use_shallow_talk else config.vocab_size
+
+ if not self.merged_lm_and_talk_heads:
+ if self.use_complex_talk_head:
+ self.talk_head = nn.ModuleList([nn.Sequential(
+ nn.Linear(talk_input_dim, config.hidden_size),
+ nn.ReLU(),
+ nn.Linear(config.hidden_size, config.hidden_size),
+ nn.ReLU(),
+ nn.Linear(config.hidden_size, talk_output_dim, bias=False)
+ )])
+ else:
+ self.talk_head = nn.ModuleList([nn.Sequential(
+ nn.Linear(talk_input_dim, talk_output_dim, bias=False)
+ )])
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.embed_tokens = value
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def set_decoder(self, decoder):
+ self.model = decoder
+
+ def get_decoder(self):
+ return self.model
+ def calculate_policy_loss(self, thoughts, rewards):
+ thought_log_probs = []
+ for thought in thoughts:
+ thought_log_prob = self.lm_head(thought).log_softmax(dim=-1)
+ thought_log_probs.append(thought_log_prob)
+
+ thought_log_probs = torch.stack(thought_log_probs, dim=1) # (batch_size, num_thoughts, seq_length, vocab_size)
+ thought_probs = torch.exp(thought_log_probs)
+
+ policy_loss = -torch.mean(thought_log_probs * rewards.unsqueeze(-1).unsqueeze(-1))
+
+ return policy_loss
+
+ def _generate_thoughts(self, hidden_states, max_length):
+ batch_size = hidden_states.size(0)
+ thought_ids = torch.zeros((batch_size, self.config.max_thoughts, max_length), dtype=torch.long, device=hidden_states.device)
+ thought_embeddings = []
+
+ for i in range(self.config.max_thoughts):
+ thought_input_ids = torch.zeros((batch_size, 1), dtype=torch.long, device=hidden_states.device)
+ thought_outputs = self.generate(
+ input_ids=thought_input_ids,
+ max_length=max_length,
+ do_sample=True,
+ top_k=50,
+ top_p=0.95,
+ pad_token_id=self.config.pad_token_id,
+ eos_token_id=self.config.eos_token_id,
+ )
+ thought_ids[:, i, :] = thought_outputs
+ thought_embeddings.append(self.get_input_embeddings()(thought_outputs))
+
+ thought_embeddings = torch.stack(thought_embeddings, dim=1)
+ return thought_ids, thought_embeddings
+
+ @torch.no_grad()
+ def infer(
+ self,
+ input_ids: torch.LongTensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ batch_size, seq_len = input_ids.shape
+
+ # Save the original input_ids and attention_mask for later use
+ original_input_ids = input_ids.clone()
+ original_attention_mask = attention_mask.clone() if attention_mask is not None else None
+
+ # Append the start thought token to the input sequence
+ start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
+ input_ids = torch.cat([input_ids, torch.tensor([[start_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
+ seq_len += 1
+
+ # Update the attention mask
+ if attention_mask is not None:
+ attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
+
+ # Generate the continuation
+ continuation_length = self.n_ahead - 2
+ new_key_values = past_key_values
+
+ start_time = time.time()
+ for continuation_idx in range(continuation_length):
+ outputs = self.model(
+ input_ids=input_ids if continuation_idx == 0 else next_token_id.unsqueeze(-1).to(input_ids.device),
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=new_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=True,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ new_key_values = outputs.past_key_values
+
+ hidden_states = outputs[0]
+
+ logits = self.lm_head(hidden_states)
+ logits = logits[:, -1, :] # Only consider the last token
+
+ # Apply Gumbel-Softmax to the logits
+ next_token_logits = F.gumbel_softmax(logits, tau=self.gumbel_temperature, hard=True, dim=-1)
+ next_token_id = torch.argmax(next_token_logits, dim=-1)
+
+ # Append the generated token to the input sequence
+ input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1).to(input_ids.device)], dim=-1)
+ seq_len += 1
+
+ # Update the attention mask
+ if attention_mask is not None:
+ attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
+
+ # Append the end thought token to the input sequence
+ end_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
+ input_ids = torch.cat([input_ids, torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
+ seq_len += 1
+
+ # Update the attention mask
+ if attention_mask is not None:
+ attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
+
+ # Get the hidden states before and after the thought
+ outputs_before = self.model(
+ input_ids=original_input_ids,
+ attention_mask=original_attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states_before = outputs_before[0][:, -1:, :]
+
+ # two new tokens: last continuation token and end thought token
+ outputs_after = self.model(
+ input_ids=torch.cat([next_token_id.unsqueeze(-1).to(input_ids.device), torch.tensor(end_thought_token_id).unsqueeze(-1).unsqueeze(-1).to(input_ids.device)], dim=-1),
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=new_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states_after = outputs_after[0][:, -1:, :]
+
+ # Apply the talk head to get the mixing weight
+ mixing_weight = self.talk_head[0](torch.cat([hidden_states_before, hidden_states_after], dim=-1))
+
+ # Apply the mixing weight to the hidden states
+ mixed_hidden_states = (1 - mixing_weight) * hidden_states_before + mixing_weight * hidden_states_after
+
+ # Apply the language model head to get the final logits
+ logits = self.lm_head(mixed_hidden_states)
+ return logits
+
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
+ def forward_quiet(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, QuietForCausalLM
+
+ >>> model = QuietForCausalLM.from_pretrained("quietai/Quiet-7B-v0.1")
+ >>> tokenizer = AutoTokenizer.from_pretrained("quietai/Quiet-7B-v0.1")
+
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
+
+ >>> # Generate
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
+ ```"""
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ outputs = self.model(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=True,
+ )
+ hidden_states = outputs.last_hidden_state
+ logits = self.lm_head(hidden_states)
+
+ thought_ids, thought_embeddings = self._generate_thoughts(hidden_states, max_length=self.config.thought_length)
+ thought_hidden_states = self.model(inputs_embeds=thought_embeddings).last_hidden_state
+
+ # Compute thought logits
+ thought_logits = self.lm_head(thought_hidden_states)
+
+ # Mix base and thought logits
+ mixed_logits = logits.unsqueeze(1) + self.mixing_head(thought_logits)
+ mixed_logits = mixed_logits.view(-1, mixed_logits.size(-1))
+
+ loss = None
+ if labels is not None:
+ # Shift so that tokens < n predict n
+ shift_logits = mixed_logits[..., :-1, :].contiguous()
+ shift_labels = labels[..., 1:].contiguous()
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
+
+ if self.use_policy_loss:
+ rewards = loss.detach().unsqueeze(1).repeat(1, self.max_thoughts)
+ if self.remove_negative_rewards:
+ rewards = torch.clamp(rewards, min=0)
+ policy_loss = self.calculate_policy_loss(thought_ids, rewards)
+ loss = loss + policy_loss
+ else:
+ loss = None
+
+ if not return_dict:
+ output = (mixed_logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return CausalLMOutputWithPast(
+ loss=loss if loss is not None else None,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, MistralForCausalLM
+
+ >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
+ >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
+
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
+
+ >>> # Generate
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
+ ```"""
+ log_dict = self.log_dict if self.training else self.eval_log_dict
+
+ if self.training and self.kill_after is not None and self.training_steps // self.gradient_accumulation_steps > self.kill_after:
+ raise ValueError("Killed after")
+
+ if not self.training:
+ n_ahead_talk_to_restore = self.n_ahead_talk
+ n_passes_to_restore = self.n_passes
+ self.n_ahead_talk = 1
+ self.n_passes = 1
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ assert self.cumulative_residual or self.clever_residual or self.skip_residual or self.no_residual
+ assert not (self.skip_residual and self.use_policy_loss)
+
+ if self.tokenized_thought_prefix is None and self.use_thought_prefix:
+ self.tokenized_thought_prefix = self.tokenizer(self.thought_prefix, return_tensors="pt", add_special_tokens=False)["input_ids"]
+
+ def apply_head(head, states, detach=False):
+ if detach:
+ head_weight = head.weight.detach()
+ else:
+ head_weight = head.weight
+ head_weight = head_weight.to(states.device)
+ return (head_weight @ states.transpose(-1, -2)).transpose(-1, -2).contiguous()
+
+ def idx_if_sequential(head, idx=0):
+ if isinstance(head, nn.Sequential) or isinstance(head, nn.ModuleList):
+ return idx_if_sequential(head[idx], idx=idx)
+ return head
+
+ def none_repeat_interleave(x, n):
+ if x is None:
+ return x
+ return x.repeat_interleave(n, dim=0)
+
+ if self.n_passes > 1:
+ input_ids = none_repeat_interleave(input_ids, self.n_passes)
+ attention_mask = none_repeat_interleave(attention_mask, self.n_passes)
+ position_ids = none_repeat_interleave(position_ids, self.n_passes)
+ inputs_embeds = none_repeat_interleave(inputs_embeds, self.n_passes)
+ labels = none_repeat_interleave(labels, self.n_passes)
+ if past_key_values is not None:
+ past_key_values = [none_repeat_interleave(p, self.n_passes) for p in past_key_values]
+ cur_token_indices = torch.arange(input_ids.shape[1], device=input_ids.device)
+
+ self.tokenizer_has_start_thought_token = True
+ self.tokenizer_has_end_thought_token = True
+ if self.start_token_id is None:
+ self.start_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
+ if self.start_token_id == 0:
+ self.start_token_id = self.tokenizer.bos_token_id
+ self.tokenizer_has_start_thought_token = False
+ elif self.use_start_thought_token:
+ # base_start_id = self.tokenizer.convert_tokens_to_ids(self.initial_start_token)
+ base_start_id = self.tokenizer.encode(self.initial_start_token, add_special_tokens=False)[0]
+ if self.initialize_thought_embedding_to_normal:
+ self.start_embedding.data = torch.zeros_like(self.start_embedding.data)
+ else:
+ self.start_embedding.data[0] = self.model.embed_tokens.weight.data[base_start_id].clone().detach() / self.embedding_scale
+ self.start_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale)
+ if self.end_token_id is None:
+ self.end_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
+ if self.end_token_id == 0:
+ self.end_token_id = self.tokenizer.eos_token_id
+ self.tokenizer_has_end_thought_token = False
+ elif self.use_end_thought_token:
+ # base_end_id = self.tokenizer.convert_tokens_to_ids(self.initial_end_token)
+ base_end_id = self.tokenizer.encode(self.initial_end_token, add_special_tokens=False)[0]
+ if self.initialize_thought_embedding_to_normal:
+ self.end_embedding.data = torch.zeros_like(self.end_embedding.data)
+ else:
+ self.end_embedding.data[0] = self.model.embed_tokens.weight.data[base_end_id].clone().detach() / self.embedding_scale
+ self.end_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale)
+
+ if not self.rm_initialized and (self.n_ahead > 1 or not self.base_original_mode):
+ self.rm_initialized = True
+ if not self.use_shallow_talk:
+ head = self.talk_head[0]
+ cur_head = head[-1] if isinstance(head, nn.Sequential) else head
+ talk_input_dim = cur_head.weight.data.shape[1]
+ talk_output_dim = 1 if self.use_weighted_talk_head else self.lm_head.weight.data.shape[0]
+ cur_head.weight.data = torch.zeros(talk_output_dim, talk_input_dim, device=cur_head.weight.device, dtype=cur_head.weight.dtype)
+ else:
+ # convert to identity transform
+ def lambda_transform(cur_head):
+ if cur_head.weight.data.shape[0] != cur_head.weight.data.shape[1]:
+ return torch.cat([
+ torch.eye(
+ cur_head.weight.data.shape[0],
+ device=cur_head.weight.device,
+ dtype=cur_head.weight.dtype
+ ),
+ torch.zeros(
+ cur_head.weight.data.shape[0],
+ cur_head.weight.data.shape[1] - cur_head.weight.data.shape[0],
+ device=cur_head.weight.device,
+ dtype=cur_head.weight.dtype
+ )], dim=1)
+ return torch.eye(
+ cur_head.weight.data.shape[0],
+ device=cur_head.weight.device,
+ dtype=cur_head.weight.dtype
+ )
+ if isinstance(self.talk_head[0], nn.Sequential):
+ for cur_head in self.talk_head[0]:
+ # if it has weights
+ if hasattr(cur_head, "weight"):
+ cur_head.weight.data = lambda_transform(cur_head)
+ else:
+ self.talk_head[-1].weight.data = lambda_transform(self.talk_head[0])
+
+ loss = None
+ prev_rm_tokens = None
+ cur_rm_tokens = None
+ prev_rm_logits = None
+ prev_sample_probs = None
+ did_skip_sampling = None
+ skip_sampling = None
+ sample_probs = None
+ hidden_states = None
+ logits = None
+ talk_kl_penalty = None
+ rm_logits = None
+ residual_logits = None
+ probabilities_2d = None
+ prev_probabilities_2d = None
+ policy_reward = None
+ logits_to_output = None
+ batch_size, seq_len = input_ids.shape
+ base_input_ids = input_ids.clone()
+ loss_list = []
+ dqn_loss_list = []
+ sampled_token_history = []
+ sample_probs_history = []
+ action_loglikelihoods_list = []
+
+ if self.use_end_thought_token or self.use_start_thought_token:
+ if not self.use_reparam_for_thought_embeddings:
+ start_embedding = self.start_embedding[0].unsqueeze(0) * self.embedding_scale
+ end_embedding = self.end_embedding[0].unsqueeze(0) * self.embedding_scale
+ else:
+ start_embedding = self.start_embedding * self.embedding_scale
+ end_embedding = self.end_embedding * self.embedding_scale
+ base_embeddings = self.model.embed_tokens.weight
+ if self.train_only_thinking_embedding:
+ base_embeddings = base_embeddings.detach()
+ # # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ fwd_iters = 1 if self.original_mode else self.n_ahead + self.n_ahead_talk - 1
+ for ahead_idx in range(fwd_iters):
+ past_key_values_length = 0
+ if past_key_values is not None:
+ use_legacy_cache = not isinstance(past_key_values, Cache)
+ if use_legacy_cache:
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
+ past_key_values_length = past_key_values.get_usable_length(seq_len)
+
+ if position_ids is None:
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+ position_ids = torch.arange(
+ past_key_values_length, seq_len + past_key_values_length, dtype=torch.long, device=device
+ )
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_len)
+ else:
+ position_ids = position_ids.view(-1, seq_len).long()
+
+ if inputs_embeds is None:
+ contains_start = self.use_start_thought_token and (input_ids == self.start_token_id).any()
+ contains_end = self.use_end_thought_token and (input_ids == self.end_token_id).any()
+ contains_thought = contains_start or contains_end
+ if contains_thought:
+ thought_id = self.start_token_id if contains_start else self.end_token_id
+ cur_thought_embedding = start_embedding if contains_start else end_embedding
+ if self.use_reparam_for_thought_embeddings:
+ inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype)
+ inputs_embeds = inputs_embeds.detach() * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0]
+ if contains_start:
+ sampled_start = inputs_embeds.clone().detach()
+ if contains_end:
+ sampled_end = inputs_embeds.clone().detach()
+ else:
+ inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1)
+ else:
+ with torch.set_grad_enabled(not self.train_only_thinking_embedding):
+ inputs_embeds = self.model.embed_tokens(input_ids)
+
+ if self.n_ahead != 1 or self.n_ahead_talk != 1 or self.comparison_mode:
+ if attention_mask is None:
+ base_attention_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=0).to(input_ids.device)
+ base_attention_mask = base_attention_mask.view(1, 1, seq_len, seq_len)
+ base_attention_mask = base_attention_mask.repeat(input_ids.shape[0], 1, 1, 1)
+ attention_mask = base_attention_mask
+ breakpoint()
+ elif attention_mask.dim() == 2:
+ if seq_len + past_key_values_length != attention_mask.shape[-1]:
+ breakpoint()
+ attention_mask = torch.cat(
+ [torch.ones((attention_mask.shape[0], past_key_values_length), dtype=attention_mask.dtype, device=attention_mask.device), attention_mask],
+ dim=-1
+ )
+ # # if the attention mask
+ attention_mask = _prepare_4d_causal_attention_mask(
+ attention_mask,
+ (batch_size, seq_len),
+ inputs_embeds,
+ past_key_values_length,
+ sliding_window=self.config.sliding_window,
+ )
+
+ outputs = self.model(
+ # input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ prev_hidden_states = hidden_states
+ hidden_states = outputs[0]
+ prev_rm_logits = rm_logits # for policy gradient
+ prev_rm_tokens = cur_rm_tokens # for policy gradient
+
+ if ahead_idx == 0:
+ hidden_states_lm = hidden_states
+ logits = self.lm_head(hidden_states_lm)
+ base_hidden_states = hidden_states.clone()
+ initial_loss_logits = logits.clone()
+ if self.optimize_lm_head_only_at_start or self.optimize_model_only_at_start:
+ logits = logits.detach()
+ base_hidden_states = base_hidden_states.detach()
+ if self.optimize_model_only_at_start:
+ hidden_states = hidden_states.detach()
+ base_logits = logits.clone()
+ else:
+ talk_hidden_states = hidden_states
+ if self.merged_lm_and_talk_heads:
+ assert self.no_residual
+ residual_logits = self.lm_head(hidden_states)
+ talk_hidden_states = hidden_states
+ else:
+ if ahead_idx > self.n_ahead - 1:
+ cur_base_hidden = torch.cat([
+ base_hidden_states[..., ahead_idx - self.n_ahead + 1:, :],
+ base_hidden_states[..., :ahead_idx - self.n_ahead + 1, :]
+ ], dim=-2)
+ else:
+ cur_base_hidden = base_hidden_states
+
+ if self.use_concat_talk_head:
+ # concatenate the hidden states with the original hidden states
+ head_input_hidden_states = torch.cat([cur_base_hidden, talk_hidden_states], dim=-1)
+ else:
+ head_input_hidden_states = talk_hidden_states
+
+ residual_logits = self.talk_head[0](head_input_hidden_states)
+ if self.use_shallow_talk:
+ residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start)
+ residual_logits = residual_logits.to(logits.device)
+ if self.use_weighted_talk_head:
+ # combine the cur_base_hidden with the talk_hidden_states according to the weighted head
+ residual_logits = cur_base_hidden * (1 - residual_logits) + talk_hidden_states * residual_logits
+ residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start)
+
+ assert sum([self.cumulative_residual, self.clever_residual, self.skip_residual, self.no_residual]) == 1
+ if self.clever_residual:
+ if ahead_idx >= self.n_ahead - 1:
+ # get the logits shifted according to the current talk ahead
+ cur_base_logits = torch.cat([
+ base_logits[..., ahead_idx - self.n_ahead + 1:, :],
+ base_logits[..., :ahead_idx - self.n_ahead + 1, :]
+ ], dim=-2)
+ if self.optimize_lm_head_only_at_start:
+ cur_base_logits = cur_base_logits.detach()
+ logits = cur_base_logits + residual_logits
+ else:
+ logits += residual_logits / self.n_ahead
+ elif self.cumulative_residual:
+ if self.residual_talk_head:
+ if ahead_idx < self.n_ahead:
+ logits += residual_logits
+ else:
+ # get the logits shifted according to the current talk ahead
+ cur_base_logits = torch.cat([
+ base_logits[..., ahead_idx - self.n_ahead + 1:, :],
+ base_logits[..., :ahead_idx - self.n_ahead + 1, :]
+ ], dim=-2)
+ if self.optimize_lm_head_only_at_start:
+ cur_base_logits = cur_base_logits.detach()
+ logits = cur_base_logits + residual_logits
+ else:
+ if ahead_idx < self.n_ahead:
+ logits += residual_logits
+ else:
+ logits = residual_logits
+ elif self.skip_residual:
+ if ahead_idx >= self.n_ahead:
+ # get the logits shifted according to the current talk ahead
+ cur_base_logits = torch.cat([
+ base_logits[..., ahead_idx - self.n_ahead + 1:, :],
+ base_logits[..., :ahead_idx - self.n_ahead + 1, :]
+ ], dim=-2)
+ if self.optimize_lm_head_only_at_start:
+ cur_base_logits = cur_base_logits.detach()
+ logits = cur_base_logits
+ elif self.no_residual:
+ logits = residual_logits
+ else:
+ logits = base_logits + residual_logits
+
+ attempted = False
+ talk_loss_list = []
+ if self.original_mode or (self.n_ahead == 1) or (self.comparison_mode and ahead_idx == 0):# or (self.optimize_lm_head_only_at_start and ahead_idx == 0):
+ loss = None
+ attempted = True
+
+ if labels is not None:
+ for shift_amount in range(self.n_ahead_talk):
+ # Shift so that tokens < n predict n
+ # ab[cde]f
+ # abc[def]
+ if ahead_idx == 0 and self.optimize_lm_head_only_at_start:
+ loss_logits = initial_loss_logits
+ else:
+ loss_logits = logits
+ shift_logits = loss_logits[..., shift_amount:-1, :].contiguous()
+ shift_labels = labels[..., 1 + shift_amount:].contiguous()
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss(reduction="none")
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
+ shift_labels = shift_labels.view(-1).clone()
+ # Enable model parallelism
+ shift_labels[shift_labels == self.tokenizer.pad_token_id] = -100
+ shift_labels = shift_labels.to(shift_logits.device)
+ loss = loss_fct(shift_logits, shift_labels)
+ if not self.comparison_mode and not (self.optimize_lm_head_only_at_start and (self.n_ahead + self.n_ahead_talk > 2)) or self.original_mode:
+ loss_list.append(loss)
+ talk_loss_list.append(nonzero_mean(loss).detach())
+
+ if not attempted or self.comparison_mode:
+ rm_hidden_states = hidden_states
+ # print("Magnitude of RM hidden states before RM head", rm_hidden_states.norm())
+ rm_logits = apply_head(self.lm_head, rm_hidden_states, detach=self.optimize_lm_head_only_at_start)
+
+ # don't allow it to predict the thinking token
+ if self.tokenizer_has_start_thought_token:
+ rm_logits[..., self.start_token_id] = -1e10
+ if self.tokenizer_has_end_thought_token:
+ rm_logits[..., self.end_token_id] = -1e10
+ probabilities = rm_logits
+ if probabilities_2d is not None:
+ prev_probabilities_2d = probabilities_2d.clone()
+ probabilities_2d = probabilities.view(-1, probabilities.size(-1))
+
+ did_skip_sampling = skip_sampling
+ skip_sampling = False
+ if ahead_idx == 0 and self.use_start_thought_token:
+ override_token = self.start_token_id
+ elif self.use_thought_prefix and ahead_idx < self.tokenized_thought_prefix.shape[-1]:
+ override_token = self.tokenized_thought_prefix[..., ahead_idx]
+ elif ahead_idx == self.n_ahead - 2 and self.use_end_thought_token:
+ override_token = self.end_token_id
+ else:
+ override_token = None
+ if override_token is not None and self.n_ahead > 1:
+ # always start with the start token
+ probabilities_2d = torch.zeros_like(probabilities_2d)
+ probabilities_2d[:, override_token] = 1.0
+ skip_sampling = True
+ elif ahead_idx >= self.n_ahead - 1:
+ if labels is not None: # we're in the talk phase
+ cur_talk_n = ahead_idx - (self.n_ahead - 1) + 1
+ # print("Setting rm to labels", cur_talk_n, "during", ahead_idx)
+ shift_labels = labels[..., cur_talk_n:].contiguous().to(probabilities_2d.device)
+ padding = torch.full_like(
+ labels[..., :cur_talk_n],
+ self.tokenizer.pad_token_id,
+ dtype=torch.long,
+ device=shift_labels.device
+ )
+ new_rm_tokens = torch.cat(
+ [shift_labels, padding],
+ dim=-1
+ )
+ # convert rm tokens to one-hot
+ probabilities_2d = F.one_hot(new_rm_tokens, num_classes=self.vocab_size).reshape(-1, self.vocab_size).to(probabilities_2d.dtype)
+ skip_sampling = True
+ else:
+ continue
+ temperature = self.gumbel_temperature if self.training else 0.001
+ prev_sample_probs = sample_probs
+ sample_probs = probabilities_2d
+ if ahead_idx < self.n_ahead - 1 and not skip_sampling:
+ probabilities_2d = F.gumbel_softmax(sample_probs, tau=temperature, hard=True, dim=-1)
+ if self.gumbel_detach:
+ probabilities_2d = probabilities_2d.detach()
+ sampled_token_history.append(probabilities_2d.argmax(dim=-1).detach().cpu())
+ # convert rm logits directly to embeddings
+ contains_start = self.use_start_thought_token and (probabilities_2d[..., self.start_token_id].sum() > 0)
+ contains_end = self.use_end_thought_token and (probabilities_2d[..., self.end_token_id].sum() > 0)
+ contains_thought = contains_start or contains_end
+
+ if not contains_thought:
+ with torch.set_grad_enabled(not self.train_only_thinking_embedding):
+ inputs_embeds = probabilities_2d @ (self.model.embed_tokens.weight.to(probabilities.device).to(probabilities.dtype))
+ else:
+ thought_id = self.start_token_id if contains_start else self.end_token_id
+ cur_thought_embedding = start_embedding if contains_start else end_embedding
+ if self.use_reparam_for_thought_embeddings:
+ inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype)
+ inputs_embeds = inputs_embeds * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0]
+ if contains_start:
+ sampled_start = inputs_embeds.clone().detach()
+ else:
+ sampled_end = inputs_embeds.clone().detach()
+ else:
+ inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1)
+ inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype)
+ inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype)
+
+ if len(attention_mask.shape) == 2:
+ breakpoint()
+ else:
+ original_attention = attention_mask[..., :attention_mask.shape[-2]]
+ if self.use_upper_triangular:
+ new_attention = original_attention
+ else:
+ original_attention = original_attention == attention_mask.max()
+ # because eye isn't implemented for BF16, we need to handle the case
+ if not attention_mask.dtype == torch.bfloat16:
+ new_attention = torch.eye(
+ seq_len, dtype=attention_mask.dtype, device=attention_mask.device
+ )
+ else:
+ new_attention = torch.eye(
+ seq_len, dtype=torch.float32, device=attention_mask.device
+ ).to(attention_mask.dtype)
+
+ new_attention = new_attention.view(1, 1, seq_len, seq_len).repeat(input_ids.shape[0], 1, 1, 1)
+ new_attention = new_attention * original_attention
+ new_attention[new_attention == 0] = attention_mask.min()
+ new_attention[new_attention == 1] = attention_mask.max()
+ attention_mask = torch.cat([attention_mask, new_attention], dim=-1)
+ past_key_values = outputs.past_key_values
+ position_ids = position_ids + 1
+
+ if labels is not None and (self.n_ahead > 1 or not self.base_original_mode):
+ # Shift so that tokens < n predict n
+ # logits: abcdef -> bcdef? -> cdef??
+ # labels: abcdef -> ?bcdef -> ??cdef
+ if ahead_idx == 0 and self.optimize_lm_head_only_at_start:
+ loss_logits = initial_loss_logits
+ else:
+ loss_logits = logits
+ shift_idx = 1 + max(0, ahead_idx - (self.n_ahead - 1))
+ shift_logits = loss_logits[..., :-shift_idx, :].contiguous()
+ shift_labels = labels[..., shift_idx:].contiguous()
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss(reduction="none")
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
+ shift_labels = shift_labels.view(-1)
+ # Enable model parallelism
+ shift_labels = shift_labels.to(shift_logits.device)
+ # if shift_labels.min() == self.tokenizer.pad_token_id:
+ shift_labels = torch.where(shift_labels == self.tokenizer.pad_token_id, -100, shift_labels)
+ unreduced_loss = loss_fct(shift_logits, shift_labels)
+ if torch.any(unreduced_loss != unreduced_loss):
+ raise ValueError("NaN loss")
+ unreduced_loss = unreduced_loss.reshape(logits.shape[0], -1)
+ loss_list.append(unreduced_loss)
+
+
+ if self.use_policy_loss and ahead_idx > 0 and (ahead_idx > 1 or not self.use_start_thought_token):
+ # we treat the change in loss as the reward
+ previous_loss = loss_list[-2]
+ # for example, suppose n_ahead = 3 and n_ahead_talk = 2
+ # note that we end at self.n_ahead + self.n_ahead_talk - 2
+ # in this case, 5 - 2 = 3, so we end at ahead_idx = 3
+ # we also predict the next token at ahead_idx = 2
+ # when we get to ahead_idx = 2, we predict ahead
+ # so we shift by 1
+ # note that this is ahead_idx = n_ahead - 1
+ # when we get to ahead_idx = 3, we predict ahead
+ # so we shift by 2
+ # note that this is ahead_idx = n_ahead
+ if ahead_idx < self.n_ahead - 1:
+ shift_amount = 0
+ original_dqn_reward = (previous_loss - unreduced_loss).detach()
+ if self.first_and_last_mode:
+ original_dqn_reward = original_dqn_reward * 0.0
+ else:
+ # logits vs cur_policy_shift_logits
+ # let's look at rm_logits and prev_rm_logits
+ shift_amount = max(0, ahead_idx - (self.n_ahead - 1))
+ # let's say shift_amount = 2
+ # abcdefg -> bcdefg? -> cdefg??
+ # logits = [a b]c d e f[g]
+ # labels = [a b c]d e f g
+ cur_policy_shift_logits = initial_loss_logits[..., shift_amount:-1, :].contiguous().detach()
+ cur_policy_shift_labels = labels[..., 1 + shift_amount:].contiguous()
+ # Flatten the tokens
+ cur_policy_loss_fct = CrossEntropyLoss(reduction="none")
+ cur_policy_shift_logits = cur_policy_shift_logits.view(-1, self.config.vocab_size)
+ cur_policy_shift_labels = cur_policy_shift_labels.view(-1).clone()
+ # Enable model parallelism
+ cur_policy_shift_labels[cur_policy_shift_labels == self.tokenizer.pad_token_id] = -100
+ cur_policy_shift_labels = cur_policy_shift_labels.to(cur_policy_shift_labels.device)
+ cur_policy_reward_base_loss = loss_fct(
+ cur_policy_shift_logits, cur_policy_shift_labels.to(cur_policy_shift_logits.device)
+ ).reshape(logits.shape[0], -1)
+ original_dqn_reward = cur_policy_reward_base_loss.detach() - unreduced_loss
+
+ if not did_skip_sampling:
+ nonzero_indices = prev_probabilities_2d.nonzero()
+ action_loglikelihoods = F.log_softmax(prev_sample_probs / self.reinforce_temperature, dim=-1)[nonzero_indices[:, 0], nonzero_indices[:, 1]]
+ action_loglikelihoods_2d = action_loglikelihoods.reshape(batch_size, -1)[:, :-1 - shift_amount]
+ action_loglikelihoods_list.append(action_loglikelihoods_2d)
+ if policy_reward is None:
+ policy_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)]
+ else:
+ if self.n_ahead_talk > shift_amount:
+ added_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)]
+ else:
+ added_reward = original_dqn_reward
+ policy_reward += added_reward
+
+ if self.use_policy_loss and ahead_idx == self.n_ahead + self.n_ahead_talk - 2:
+ # only compute during the thinking phase
+ if self.use_reparam_for_thought_embeddings and (self.use_start_thought_token or self.use_end_thought_token):
+ # sampled_start, sampled_end
+ # calculate the log likelihood of the start and end embeddings sampled from a multivariate normal distribution
+ # with mean start_embedding[0] and standard deviation start_embedding[1]
+ if self.use_start_thought_token:
+ exp_start_std = torch.exp(start_embedding[1])
+ start_loglikelihood = -0.5 * (sampled_start.detach() - start_embedding[0]) ** 2 / exp_start_std ** 2 - start_embedding[1] - 0.5 * math.log(2 * math.pi)
+ start_loglikelihood = start_loglikelihood.mean(dim=-1)
+ if self.use_end_thought_token:
+ exp_end_std = torch.exp(end_embedding[1])
+ end_loglikelihood = -0.5 * (sampled_end.detach() - end_embedding[0]) ** 2 / exp_end_std ** 2 - end_embedding[1] - 0.5 * math.log(2 * math.pi)
+ end_loglikelihood = end_loglikelihood.mean(dim=-1)
+ # we use the mean instead of the sum to prevent dependence on the dimensionality of the embeddings
+ if self.use_end_thought_token and self.use_policy_loss_for_end_thought:
+ action_loglikelihoods_list.append(end_loglikelihood)
+ if self.use_start_thought_token:
+ action_loglikelihoods_list.append(start_loglikelihood)
+
+ if ahead_idx == self.n_ahead + self.n_ahead_talk - 2 and self.eval_mode:
+ with torch.no_grad():
+ # calculate the 0.75 quantile of the rewards
+ filtered_tokens = input_ids[:, :policy_reward.shape[-1]].cpu().detach().numpy().flatten()
+ filtered_tokens_mask = filtered_tokens != self.tokenizer.pad_token_id
+ filtered_tokens = filtered_tokens[filtered_tokens_mask]
+ filtered_rewards = policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten()
+ filtered_rewards = filtered_rewards[filtered_tokens_mask]
+
+ abs_reward_list = np.abs(policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten())
+ abs_reward_list = abs_reward_list[filtered_tokens_mask]
+ medium_quantile = np.quantile(abs_reward_list, 0.5)
+ upper_quantile = np.quantile(abs_reward_list, 0.95)
+
+ for action_loglikelihoods_2d in action_loglikelihoods_list:
+ train_policy_reward = policy_reward
+
+ # discard rewards below the mean
+ if self.trice_mode and self.n_passes > 1:
+ batched_policy_reward = train_policy_reward.reshape(-1, self.n_passes, train_policy_reward.shape[-1])
+ # average over the passes
+ train_policy_reward = batched_policy_reward - batched_policy_reward.mean(dim=1, keepdim=True)
+ train_policy_reward = train_policy_reward.reshape(-1, train_policy_reward.shape[-1])
+
+ if self.subtract_mean_reward:
+ train_policy_reward = train_policy_reward - train_policy_reward.mean()
+ if self.remove_negative_rewards:
+ fixed_policy_reward = train_policy_reward.detach().clamp(min=0)
+ else:
+ fixed_policy_reward = train_policy_reward.detach()
+ actor_loss = -fixed_policy_reward * action_loglikelihoods_2d[:, :policy_reward.shape[-1]].to(policy_reward.device)
+ if action_loglikelihoods_2d.mean() < -1e4 and not self.use_policy_loss_just_for_thoughts:
+ # This will only happen when we force the next token to be the end of thought token
+ break
+ dqn_loss_list.append(actor_loss.mean())
+
+ if loss_list:
+ if self.first_and_last_mode:
+ loss = sum(
+ self.loss_mean(loss_list[-(i + 1)]) for i in range(self.n_ahead_talk)
+ ) * (1 - self.original_loss_weight) / self.n_ahead_talk
+ loss = loss + self.loss_mean(loss_list[0]) * self.original_loss_weight
+ # Let's NaN out the others
+ # e.g. if n_ahead_talk = 2 and the list is 5 long, we want to NaN out 1, 2 but keep 0, 3, 4
+ for i in range(1, len(loss_list) - self.n_ahead_talk):
+ loss_list[i] = loss_list[i] * math.nan
+ elif self.first_only:
+ loss = self.loss_mean(loss_list[0])
+ elif self.final_only_mode:
+ loss = sum(
+ self.loss_mean(loss_list[-i]) for i in range(1, self.n_ahead_talk + 1)
+ ) / self.n_ahead_talk
+ else:
+ loss = None
+ for i in range(len(loss_list)):
+ cur_loss = self.loss_mean(loss_list[i])
+ if loss is not None:
+ loss = loss + cur_loss.to(loss.device)
+ else:
+ loss = cur_loss
+ loss = loss / len(loss_list)
+
+ loss = loss * self.base_loss_beta
+
+ if dqn_loss_list:
+ dqn_loss = sum(dqn_loss_list) / len(dqn_loss_list)
+ if self.include_policy_loss:
+ if loss is not None:
+ loss += dqn_loss * self.policy_loss_beta
+ else:
+ loss = dqn_loss * self.policy_loss_beta
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return (loss,) + output if loss is not None else output
+
+ base_log_dict = {
+ f"loss_{i}": nonzero_mean(loss_list[i]) for i in range(len(loss_list))
+ }
+
+ if loss is not None:
+ base_log_dict["loss_train"] = loss.item()
+
+ for loss_key, loss_val in base_log_dict.items():
+ log_dict[loss_key] += loss_val / self.n_tokens_print
+
+ if self.use_policy_loss and policy_reward is not None:
+ log_dict["policy_loss"] += dqn_loss / self.n_tokens_print
+ log_dict["policy_reward"] += policy_reward.mean() / self.n_tokens_print
+
+ if not loss_list:
+ if loss is not None:
+ log_dict["loss_0"] += loss / self.n_tokens_print
+ else:
+ log_dict["loss_final"] += nonzero_mean(loss_list[-1]) / self.n_tokens_print
+ log_dict["loss_talk"] += sum(nonzero_mean(cur_loss_item) for cur_loss_item in loss_list[-self.n_ahead_talk:]) / self.n_ahead_talk / self.n_tokens_print
+
+ # also log relative losses to loss_0
+ if loss_list:
+ for i in range(len(loss_list)):
+ talk_idx = min(max(i - (self.n_ahead - 1), 0), len(talk_loss_list) - 1)
+ if not talk_loss_list:
+ cur_talk_loss = nonzero_mean(loss_list[0])
+ else:
+ cur_talk_loss = talk_loss_list[talk_idx]
+ log_dict[f"rel_loss_{i}"] += (nonzero_mean(loss_list[i]) - cur_talk_loss) / self.n_tokens_print
+ if self.training:
+ self.training_steps += 1
+
+ if not self.training:
+ self.n_ahead_talk = n_ahead_talk_to_restore
+ self.n_passes = n_passes_to_restore
+ return CausalLMOutputWithPast(
+ loss=loss if loss is not None else None,
+ logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def prepare_inputs_for_generation(
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
+ ):
+ # Omit tokens covered by past_key_values
+ if past_key_values is not None:
+ if isinstance(past_key_values, Cache):
+ cache_length = past_key_values.get_seq_length()
+ past_length = past_key_values.seen_tokens
+ max_cache_length = past_key_values.get_max_length()
+ else:
+ cache_length = past_length = past_key_values[0][0].shape[2]
+ max_cache_length = None
+
+ # Keep only the unprocessed tokens:
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing inputs_embeds as
+ # input)
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
+ # input_ids based on the past_length.
+ elif past_length < input_ids.shape[1]:
+ input_ids = input_ids[:, past_length:]
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
+
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
+ if (
+ max_cache_length is not None
+ and attention_mask is not None
+ and cache_length + input_ids.shape[1] > max_cache_length
+ ):
+ attention_mask = attention_mask[:, -max_cache_length:]
+
+ position_ids = kwargs.get("position_ids", None)
+ if attention_mask is not None and position_ids is None:
+ # create position_ids on the fly for batch generation
+ position_ids = attention_mask.long().cumsum(-1) - 1
+ position_ids.masked_fill_(attention_mask == 0, 1)
+ if past_key_values:
+ position_ids = position_ids[:, -input_ids.shape[1] :]
+
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
+ if inputs_embeds is not None and past_key_values is None:
+ model_inputs = {"inputs_embeds": inputs_embeds}
+ else:
+ model_inputs = {"input_ids": input_ids}
+
+ model_inputs.update(
+ {
+ "position_ids": position_ids,
+ "past_key_values": past_key_values,
+ "use_cache": kwargs.get("use_cache"),
+ "attention_mask": attention_mask,
+ }
+ )
+ return model_inputs
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
+ )
+ return reordered_past
+
+class MistralQuietForCausalLM(MistralPreTrainedModel):
+ _tied_weights_keys = ["lm_head.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.model = MistralModel(config)
+ self.vocab_size = config.vocab_size
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+ self.max_thoughts = config.max_thoughts
+ self.merged_lm_and_talk_heads = config.merged_lm_and_talk_heads
+ self.use_concat_talk_head = config.use_concat_talk_head
+ self.use_shallow_talk = config.use_shallow_talk
+ self.use_complex_talk_head = config.use_complex_talk_head
+ self.use_weighted_talk_head = config.use_weighted_talk_head
+ # the weighted head will output a single value, so it can't be passed to the lm head
+ assert not (self.use_weighted_talk_head and self.use_shallow_talk)
+
+ self.n_ahead = 1
+ self.n_ahead_talk = 1
+ self.n_passes = 1
+ self.n_tokens_print = 1
+ self.gradient_accumulation_steps = 1
+ self.training_steps = 0
+ self.tokenizer = None
+ self.start_token_id = None
+ self.end_token_id = None
+ self.rm_initialized = False
+ self.residual_talk_head = True
+ self.thought_init_std_scale = 1e-2
+
+ self.final_only_mode = False
+ self.first_and_last_mode = True
+ self.first_only = False
+ self.original_loss_weight = 0.5
+
+ self.cumulative_residual = False
+ self.clever_residual = False
+ self.skip_residual = False
+ self.no_residual = True
+
+ self.optimize_lm_head_only_at_start = False
+ self.optimize_model_only_at_start = False
+
+ if self.optimize_model_only_at_start:
+ raise NotImplementedError
+ self.train_only_thinking_embedding = False
+ self.weighted_embeddings = False
+ self.use_start_thought_token = True
+ self.use_end_thought_token = True
+ self.initialize_thought_embedding_to_normal = False
+ self.initial_start_token = "---"
+ self.initial_end_token = "---"
+ self.output_logits_at_the_end = True
+
+ self.gumbel_temperature = 0.001
+
+ self.use_policy_loss = True
+ self.include_policy_loss = True
+ self.trice_mode = True
+ self.remove_negative_rewards = True
+ self.use_policy_loss_for_end_thought = True
+
+ self.base_original_mode = False
+ self.original_mode = False
+
+ self.thought_prefix = "(Let's think step by step"
+ self.tokenized_thought_prefix = None
+ self.log_dict = defaultdict(int)
+ self.eval_log_dict = defaultdict(int)
+ self.print_final_only = True
+ self.loss_mean = loss_mean
+ self.all_rewards = []
+ self.all_unreduced_losses = []
+ self.kill_after = 100
+
+ self.start_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))
+ self.end_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))
+
+ self.policy_loss_beta = 1e6
+ self.embedding_scale = 1e2
+ self.reinforce_temperature = 3
+ self.base_loss_beta = 1
+
+ # Not used in the paper:
+ self.use_thought_prefix = False
+ self.use_reparam_for_thought_embeddings = False
+ self.use_upper_triangular = False
+ self.subtract_mean_reward = False
+ self.comparison_mode = False
+ self.gumbel_detach = True
+
+ # For visualization
+ self.eval_mode = False
+
+ num_talk = 1
+ talk_input_dim = config.hidden_size if not self.use_concat_talk_head else config.hidden_size * 2
+ if self.use_weighted_talk_head:
+ talk_output_dim = 1
+ else:
+ talk_output_dim = config.hidden_size if self.use_shallow_talk else config.vocab_size
+
+ if not self.merged_lm_and_talk_heads:
+ if self.use_complex_talk_head:
+ self.talk_head = nn.ModuleList([nn.Sequential(
+ nn.Linear(talk_input_dim, config.hidden_size),
+ nn.ReLU(),
+ nn.Linear(config.hidden_size, config.hidden_size),
+ nn.ReLU(),
+ nn.Linear(config.hidden_size, talk_output_dim, bias=False)
+ )])
+ else:
+ self.talk_head = nn.ModuleList([nn.Sequential(
+ nn.Linear(talk_input_dim, talk_output_dim, bias=False)
+ )])
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.embed_tokens = value
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def set_decoder(self, decoder):
+ self.model = decoder
+
+ def get_decoder(self):
+ return self.model
+ def calculate_policy_loss(self, thoughts, rewards):
+ thought_log_probs = []
+ for thought in thoughts:
+ thought_log_prob = self.lm_head(thought).log_softmax(dim=-1)
+ thought_log_probs.append(thought_log_prob)
+
+ thought_log_probs = torch.stack(thought_log_probs, dim=1) # (batch_size, num_thoughts, seq_length, vocab_size)
+ thought_probs = torch.exp(thought_log_probs)
+
+ policy_loss = -torch.mean(thought_log_probs * rewards.unsqueeze(-1).unsqueeze(-1))
+
+ return policy_loss
+
+ def _generate_thoughts(self, hidden_states, max_length):
+ batch_size = hidden_states.size(0)
+ thought_ids = torch.zeros((batch_size, self.config.max_thoughts, max_length), dtype=torch.long, device=hidden_states.device)
+ thought_embeddings = []
+
+ for i in range(self.config.max_thoughts):
+ thought_input_ids = torch.zeros((batch_size, 1), dtype=torch.long, device=hidden_states.device)
+ thought_outputs = self.generate(
+ input_ids=thought_input_ids,
+ max_length=max_length,
+ do_sample=True,
+ top_k=50,
+ top_p=0.95,
+ pad_token_id=self.config.pad_token_id,
+ eos_token_id=self.config.eos_token_id,
+ )
+ thought_ids[:, i, :] = thought_outputs
+ thought_embeddings.append(self.get_input_embeddings()(thought_outputs))
+
+ thought_embeddings = torch.stack(thought_embeddings, dim=1)
+ return thought_ids, thought_embeddings
+
+ @torch.no_grad()
+ def infer(
+ self,
+ input_ids: torch.LongTensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ batch_size, seq_len = input_ids.shape
+
+ # Save the original input_ids and attention_mask for later use
+ original_input_ids = input_ids.clone()
+ original_attention_mask = attention_mask.clone() if attention_mask is not None else None
+
+ # Append the start thought token to the input sequence
+ start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
+ input_ids = torch.cat([input_ids, torch.tensor([[start_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
+ seq_len += 1
+
+ # Update the attention mask
+ if attention_mask is not None:
+ attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
+
+ # Generate the continuation
+ continuation_length = self.n_ahead - 2
+ new_key_values = past_key_values
+
+ start_time = time.time()
+ for continuation_idx in range(continuation_length):
+ outputs = self.model(
+ input_ids=input_ids if continuation_idx == 0 else next_token_id.unsqueeze(-1).to(input_ids.device),
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=new_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=True,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ new_key_values = outputs.past_key_values
+
+ hidden_states = outputs[0]
+
+ logits = self.lm_head(hidden_states)
+ logits = logits[:, -1, :] # Only consider the last token
+
+ # Apply Gumbel-Softmax to the logits
+ next_token_logits = F.gumbel_softmax(logits, tau=self.gumbel_temperature, hard=True, dim=-1)
+ next_token_id = torch.argmax(next_token_logits, dim=-1)
+
+ # Append the generated token to the input sequence
+ input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1).to(input_ids.device)], dim=-1)
+ seq_len += 1
+
+ # Update the attention mask
+ if attention_mask is not None:
+ attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
+
+ # Append the end thought token to the input sequence
+ end_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
+ input_ids = torch.cat([input_ids, torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
+ seq_len += 1
+
+ # Update the attention mask
+ if attention_mask is not None:
+ attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
+
+ # Get the hidden states before and after the thought
+ outputs_before = self.model(
+ input_ids=original_input_ids,
+ attention_mask=original_attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states_before = outputs_before[0][:, -1:, :]
+
+ # two new tokens: last continuation token and end thought token
+ outputs_after = self.model(
+ input_ids=torch.cat([next_token_id.unsqueeze(-1).to(input_ids.device), torch.tensor(end_thought_token_id).unsqueeze(-1).unsqueeze(-1).to(input_ids.device)], dim=-1),
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=new_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states_after = outputs_after[0][:, -1:, :]
+
+ # Apply the talk head to get the mixing weight
+ mixing_weight = self.talk_head[0](torch.cat([hidden_states_before, hidden_states_after], dim=-1))
+
+ # Apply the mixing weight to the hidden states
+ mixed_hidden_states = (1 - mixing_weight) * hidden_states_before + mixing_weight * hidden_states_after
+
+ # Apply the language model head to get the final logits
+ logits = self.lm_head(mixed_hidden_states)
+ return logits
+
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, QuietForCausalLM
+
+ >>> model = QuietForCausalLM.from_pretrained("quietai/Quiet-7B-v0.1")
+ >>> tokenizer = AutoTokenizer.from_pretrained("quietai/Quiet-7B-v0.1")
+
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
+
+ >>> # Generate
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
+ ```"""
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ outputs = self.model(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=True,
+ )
+ hidden_states = outputs.last_hidden_state
+ logits = self.lm_head(hidden_states)
+
+ thought_ids, thought_embeddings = self._generate_thoughts(hidden_states, max_length=self.config.thought_length)
+ thought_hidden_states = self.model(inputs_embeds=thought_embeddings).last_hidden_state
+
+ # Compute thought logits
+ thought_logits = self.lm_head(thought_hidden_states)
+
+ # Mix base and thought logits
+ mixed_logits = logits.unsqueeze(1) + self.mixing_head(thought_logits)
+ mixed_logits = mixed_logits.view(-1, mixed_logits.size(-1))
+
+ loss = None
+ if labels is not None:
+ # Shift so that tokens < n predict n
+ shift_logits = mixed_logits[..., :-1, :].contiguous()
+ shift_labels = labels[..., 1:].contiguous()
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
+
+ if self.use_policy_loss:
+ rewards = loss.detach().unsqueeze(1).repeat(1, self.max_thoughts)
+ if self.remove_negative_rewards:
+ rewards = torch.clamp(rewards, min=0)
+ policy_loss = self.calculate_policy_loss(thought_ids, rewards)
+ loss = loss + policy_loss
+ else:
+ loss = None
+
+ if not return_dict:
+ output = (mixed_logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return CausalLMOutputWithPast(
+ loss=loss if loss is not None else None,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def prepare_inputs_for_generation(
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
+ ):
+ # Omit tokens covered by past_key_values
+ if past_key_values is not None:
+ if isinstance(past_key_values, Cache):
+ cache_length = past_key_values.get_seq_length()
+ past_length = past_key_values.seen_tokens
+ max_cache_length = past_key_values.get_max_length()
+ else:
+ cache_length = past_length = past_key_values[0][0].shape[2]
+ max_cache_length = None
+
+ # Keep only the unprocessed tokens:
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing inputs_embeds as
+ # input)
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
+ # input_ids based on the past_length.
+ elif past_length < input_ids.shape[1]:
+ input_ids = input_ids[:, past_length:]
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
+
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
+ if (
+ max_cache_length is not None
+ and attention_mask is not None
+ and cache_length + input_ids.shape[1] > max_cache_length
+ ):
+ attention_mask = attention_mask[:, -max_cache_length:]
+
+ position_ids = kwargs.get("position_ids", None)
+ if attention_mask is not None and position_ids is None:
+ # create position_ids on the fly for batch generation
+ position_ids = attention_mask.long().cumsum(-1) - 1
+ position_ids.masked_fill_(attention_mask == 0, 1)
+ if past_key_values:
+ position_ids = position_ids[:, -input_ids.shape[1] :]
+
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
+ if inputs_embeds is not None and past_key_values is None:
+ model_inputs = {"inputs_embeds": inputs_embeds}
+ else:
+ model_inputs = {"input_ids": input_ids}
+
+ model_inputs.update(
+ {
+ "position_ids": position_ids,
+ "past_key_values": past_key_values,
+ "use_cache": kwargs.get("use_cache"),
+ "attention_mask": attention_mask,
+ }
+ )
+ return model_inputs
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
+ )
+ return reordered_past
+
+
+
+############################## Extra Heads #################################
+
+############# Sequence Classification #################
+@add_start_docstrings(
+ """
+ The Mistral Model transformer with a sequence classification head on top (linear layer).
+
+ [`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models
+ (e.g. GPT-2) do.
+
+ Since it does classification on the last token, it requires to know the position of the last token. If a
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
+ each row of the batch).
+ """,
+ MISTRAL_START_DOCSTRING,
+)
+# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mistral, LLAMA->MISTRAL
+class MistralForSequenceClassification(MistralPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.model = MistralModel(config)
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.embed_tokens = value
+
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ transformer_outputs = self.model(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = transformer_outputs[0]
+ logits = self.score(hidden_states)
+
+ if input_ids is not None:
+ batch_size = input_ids.shape[0]
+ else:
+ batch_size = inputs_embeds.shape[0]
+
+ if self.config.pad_token_id is None and batch_size != 1:
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
+ if self.config.pad_token_id is None:
+ sequence_lengths = -1
+ else:
+ if input_ids is not None:
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
+ sequence_lengths = sequence_lengths.to(logits.device)
+ else:
+ sequence_lengths = -1
+
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
+
+ loss = None
+ if labels is not None:
+ labels = labels.to(logits.device)
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(pooled_logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(pooled_logits, labels)
+ if not return_dict:
+ output = (pooled_logits,) + transformer_outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutputWithPast(
+ loss=loss,
+ logits=pooled_logits,
+ past_key_values=transformer_outputs.past_key_values,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
+
+############# Token Classification #################
+@add_start_docstrings(
+ """
+ The Mistral Model transformer with a token classification head on top (a linear layer on top of the hidden-states
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
+ """,
+ MISTRAL_START_DOCSTRING,
+)
+# Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->Mistral, LLAMA->MISTRAL
+class MistralForTokenClassification(MistralPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.model = MistralModel(config)
+ if getattr(config, "classifier_dropout", None) is not None:
+ classifier_dropout = config.classifier_dropout
+ elif getattr(config, "hidden_dropout", None) is not None:
+ classifier_dropout = config.hidden_dropout
+ else:
+ classifier_dropout = 0.1
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.embed_tokens = value
+
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, TokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.model(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = outputs[0]
+ sequence_output = self.dropout(sequence_output)
+ logits = self.score(sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+############# QuestionAnswer #################
+@add_start_docstrings(
+ """
+The Mistral Model transformer with a span classification head on top for extractive question-answering tasks like
+SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ MISTRAL_START_DOCSTRING,
+)
+class MistralForQuestionAnswering(MistralPreTrainedModel):
+ base_model_prefix = "transformer"
+
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Llama
+ def __init__(self, config):
+ super().__init__(config)
+ self.transformer = MistralModel(config)
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.transformer.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.transformer.embed_tokens = value
+
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ start_positions: Optional[torch.LongTensor] = None,
+ end_positions: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.transformer(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[2:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+############################## Closed Extra Heads ###########################
\ No newline at end of file