diff --git "a/_SpydazWebAI_Mistral_Transformer_.py" "b/_SpydazWebAI_Mistral_Transformer_.py" new file mode 100644--- /dev/null +++ "b/_SpydazWebAI_Mistral_Transformer_.py" @@ -0,0 +1,6934 @@ +# SpydazWeb AI MistralStar +################################ Introduction ############################## + +# SpydazWeb AI Mistral Transformer ! this is a model based off of the mistral and mixtral models : +# it is created t eneble the model to generate thoughts before generating response: +# This is the first Generation of research; +# this paradigm will be improved: - + +## Note: to: Self: +# the model should generate a thought based of the thought prompt , then it should use its thought generation to pass to the model input : +# with the original input : ( cross attention ) - +# this should enhance the input to the model also providing extra content for the generation stage: +# ( later work ) - these thought should be generated by multiple heads : +# as perhaps internal agents/Experts hence for each head it would need head prompt :perhaps this should be a hardcoded process? +# problem is how to frame it in the config ? - +# then each head could generate content and the final head suamarize the content with the input to provide a rich query? +# in fact a single prompt is fine to hold multiple thoughts perhaps , +# as this will be stacked on top of the input ? to the hidden context size may need to be larger than the model size? +# PROJECT: ENDNING ? +# we need to have the extra processor in the tokenizer or the model ( perhaps the tokenizer is the best place for input management , +# so to add the audio spectograph encoder and the Vision caption Trnsformer , +# so given a image or a sound it will provuide the outputs for each item prompt , +# hence the tokenizer response will need to be message based : ie seperate image description , seperate text , +# seperate audio description( not Speech as this shoudl be an other rag front end? or pre processor to the tokenizer , +# for speech input it will handled in another model as that will be encoder/decoder ! this model is a decoder model and +# the tokenizer / preprocessors are the encoder layers ~!)) + + + + + +################################ Imports ############################## +import inspect +import math +import copy +import os +import time +import pandas as pd +import seaborn as sns +import matplotlib.pyplot as plt + +from termcolor import colored +from tqdm import tqdm +import random +import numpy as np +from matplotlib.colors import LinearSegmentedColormap, LogNorm +import warnings +from collections import defaultdict +from typing import List, Optional, Tuple, Union + + +from typing import List, Optional, Tuple, Union +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss +import torch.nn.functional as F +from transformers.configuration_utils import PretrainedConfig +from transformers.utils import logging,add_start_docstrings,add_start_docstrings_to_model_forward,replace_return_docstrings +from transformers.modeling_utils import PreTrainedModel +from transformers.cache_utils import Cache,DynamicCache, SlidingWindowCache, StaticCache +from transformers.activations import ACT2FN +from transformers.modeling_attn_mask_utils import AttentionMaskConverter +from transformers.modeling_outputs import BaseModelOutputWithPast,CausalLMOutputWithPast,SequenceClassifierOutputWithPast,TokenClassifierOutput,QuestionAnsweringModelOutput,MoeCausalLMOutputWithPast,MoeModelOutputWithPast +from tokenizers import processors +from transformers.tokenization_utils_fast import PreTrainedTokenizerFast +from transformers.utils import is_sentencepiece_available, logging +from transformers.utils.versions import require_version +from shutil import copyfile +from collections import defaultdict +from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple +import sentencepiece as spm +from transformers.convert_slow_tokenizer import import_protobuf +from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer +from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa +from transformers.utils import logging +from transformers.utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + is_flash_attn_greater_or_equal_2_10, + logging, + replace_return_docstrings, +) +if TYPE_CHECKING: + from transformers.tokenization_utils_base import TextInput +if is_flash_attn_2_available(): + from flash_attn import flash_attn_func, flash_attn_varlen_func + from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa + + _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) + +MISTRAL_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Two formats are allowed: + - a [`~cache_utils.Cache`] instance; + - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy + cache format. + + The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" +MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json", + "mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json", +} +MISTRAL_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`MistralConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" +_CONFIG_FOR_DOC = "MistralStarConfig" +logger = logging.get_logger(__name__) +SPIECE_UNDERLINE = "▁" +require_version("tokenizers>=0.13.3") +VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"} + +B_INST, E_INST = "[INST]", "[/INST]" +B_SYS, E_SYS = "<>\n", "\n<>\n\n" + +# fmt: off +DEFAULT_SYSTEM_PROMPT = """you are the world archive of knowledge and a friendly helpful artificial intelligent being: +consider if the current task denotes the creation of a function in python that can be saved and re-used for a future task, +if created, return the artifact to the user, in the response, or if access is given to be save as a file on the user system: +Be flirtatious and joyfull, always willing to help or engage in conversation or express an opinion or sentiment: +answer all questions indepth supply and helpfull references where possible; """ +# fmt: on + +############################## Models ################################# +class MixtralConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`MixtralModel`]. It is used to instantiate an + Mixtral model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the Mixtral-7B-v0.1 or Mixtral-7B-Instruct-v0.1. + + [mixtralai/Mixtral-8x7B](https://huggingface.co/mixtralai/Mixtral-8x7B) + [mixtralai/Mixtral-7B-Instruct-v0.1](https://huggingface.co/mixtralai/Mixtral-7B-Instruct-v0.1) + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 32000): + Vocabulary size of the Mixtral model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`MixtralModel`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 14336): + Dimension of the MLP representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer encoder. + num_key_value_heads (`int`, *optional*, defaults to 8): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to `4096*32`): + The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention + allows sequence of up to 4096*32 tokens. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + rms_norm_eps (`float`, *optional*, defaults to 1e-05): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + pad_token_id (`int`, *optional*): + The id of the padding token. + bos_token_id (`int`, *optional*, defaults to 1): + The id of the "beginning-of-sequence" token. + eos_token_id (`int`, *optional*, defaults to 2): + The id of the "end-of-sequence" token. + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether the model's input and output word embeddings should be tied. + rope_theta (`float`, *optional*, defaults to 1000000.0): + The base period of the RoPE embeddings. + sliding_window (`int`, *optional*): + Sliding window attention window size. If not specified, will default to `4096`. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + num_experts_per_tok (`int`, *optional*, defaults to 2): + The number of experts to route per-token, can be also interpreted as the `top-k` routing + parameter + num_local_experts (`int`, *optional*, defaults to 8): + Number of experts per Sparse MLP layer. + output_router_logits (`bool`, *optional*, defaults to `False`): + Whether or not the router logits should be returned by the model. Enabeling this will also + allow the model to output the auxiliary loss. See [here]() for more details + router_aux_loss_coef (`float`, *optional*, defaults to 0.001): + The aux loss factor for the total loss. + router_jitter_noise (`float`, *optional*, defaults to 0.0): + Amount of noise to add to the router. + + ```python + >>> from transformers import MixtralModel, MixtralConfig + + >>> # Initializing a Mixtral 7B style configuration + >>> configuration = MixtralConfig() + + >>> # Initializing a model from the Mixtral 7B style configuration + >>> model = MixtralModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "mixtral" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size=32000, + hidden_size=4096, + intermediate_size=14336, + num_hidden_layers=32, + num_attention_heads=32, + num_key_value_heads=8, + hidden_act="silu", + max_position_embeddings=4096 * 32, + initializer_range=0.02, + rms_norm_eps=1e-5, + use_cache=True, + pad_token_id=None, + bos_token_id=1, + eos_token_id=2, + tie_word_embeddings=False, + rope_theta=1e6, + sliding_window=None, + attention_dropout=0.0, + num_experts_per_tok=2, + num_local_experts=8, + output_router_logits=False, + router_aux_loss_coef=0.001, + router_jitter_noise=0.0, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.sliding_window = sliding_window + + # for backward compatibility + if num_key_value_heads is None: + num_key_value_heads = num_attention_heads + + self.num_key_value_heads = num_key_value_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.use_cache = use_cache + self.rope_theta = rope_theta + self.attention_dropout = attention_dropout + + self.num_experts_per_tok = num_experts_per_tok + self.num_local_experts = num_local_experts + self.output_router_logits = output_router_logits + self.router_aux_loss_coef = router_aux_loss_coef + self.router_jitter_noise = router_jitter_noise + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) + +class MistralStarConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an + Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1. + + [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) + [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 32000): + Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`MistralModel`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 14336): + Dimension of the MLP representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer encoder. + num_key_value_heads (`int`, *optional*, defaults to 8): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to `4096*32`): + The maximum sequence length that this model might ever be used with. Mistral's sliding window attention + allows sequence of up to 4096*32 tokens. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + rms_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + pad_token_id (`int`, *optional*): + The id of the padding token. + bos_token_id (`int`, *optional*, defaults to 1): + The id of the "beginning-of-sequence" token. + eos_token_id (`int`, *optional*, defaults to 2): + The id of the "end-of-sequence" token. + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether the model's input and output word embeddings should be tied. + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + sliding_window (`int`, *optional*, defaults to 4096): + Sliding window attention window size. If not specified, will default to `4096`. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + + ```python + >>> from transformers import MistralModel, MistralConfig + + >>> # Initializing a Mistral 7B style configuration + >>> configuration = MistralConfig() + + >>> # Initializing a model from the Mistral 7B style configuration + >>> model = MistralModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "mistralstar" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size=32000, + hidden_size=4096, + intermediate_size=14336, + num_hidden_layers=32, + num_attention_heads=32, + num_key_value_heads=8, + hidden_act="silu", + max_position_embeddings=4096 * 32, + initializer_range=0.02, + rms_norm_eps=1e-6, + use_cache=True, + pad_token_id=None, + bos_token_id=1, + eos_token_id=2, + tie_word_embeddings=False, + rope_theta=10000.0, + sliding_window=4096, + attention_dropout=0.0, + max_thoughts=16, + thought_length = 10, + merged_talk_heads=True, + merged_lm_and_talk_heads=False, + merged_lm_and_think_heads=True, + use_concat_talk_head=True, + use_shallow_think=True, + use_shallow_talk=False, + use_complex_think_head=False, + use_complex_talk_head=True, + use_weighted_talk_head=True, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.sliding_window = sliding_window + + # for backward compatibility + if num_key_value_heads is None: + num_key_value_heads = num_attention_heads + + self.num_key_value_heads = num_key_value_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.use_cache = use_cache + self.rope_theta = rope_theta + self.attention_dropout = attention_dropout + self.max_thoughts = max_thoughts + self.thought_length = thought_length + self.merged_talk_heads = merged_talk_heads + self.merged_lm_and_talk_heads = merged_lm_and_talk_heads + self.merged_lm_and_think_heads = merged_lm_and_think_heads + self.use_concat_talk_head = use_concat_talk_head + self.use_shallow_think = use_shallow_think + self.use_shallow_talk = use_shallow_talk + self.use_complex_think_head = use_complex_think_head + self.use_complex_talk_head = use_complex_talk_head + self.use_weighted_talk_head = use_weighted_talk_head + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) + +class MistralConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an + Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1. + + [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) + [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 32000): + Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`MistralModel`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 14336): + Dimension of the MLP representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer encoder. + num_key_value_heads (`int`, *optional*, defaults to 8): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to `4096*32`): + The maximum sequence length that this model might ever be used with. Mistral's sliding window attention + allows sequence of up to 4096*32 tokens. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + rms_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + pad_token_id (`int`, *optional*): + The id of the padding token. + bos_token_id (`int`, *optional*, defaults to 1): + The id of the "beginning-of-sequence" token. + eos_token_id (`int`, *optional*, defaults to 2): + The id of the "end-of-sequence" token. + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether the model's input and output word embeddings should be tied. + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + sliding_window (`int`, *optional*, defaults to 4096): + Sliding window attention window size. If not specified, will default to `4096`. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + + ```python + >>> from transformers import MistralModel, MistralConfig + + >>> # Initializing a Mistral 7B style configuration + >>> configuration = MistralConfig() + + >>> # Initializing a model from the Mistral 7B style configuration + >>> model = MistralModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "mistral" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size=32000, + hidden_size=4096, + intermediate_size=14336, + num_hidden_layers=32, + num_attention_heads=32, + num_key_value_heads=8, + hidden_act="silu", + max_position_embeddings=4096 * 32, + initializer_range=0.02, + rms_norm_eps=1e-6, + use_cache=True, + pad_token_id=None, + bos_token_id=1, + eos_token_id=2, + tie_word_embeddings=False, + rope_theta=10000.0, + sliding_window=4096, + attention_dropout=0.0, + max_thoughts=16, + merged_talk_heads=True, + merged_lm_and_talk_heads=False, + merged_lm_and_think_heads=True, + use_concat_talk_head=True, + use_shallow_think=True, + use_shallow_talk=False, + use_complex_think_head=False, + use_complex_talk_head=True, + use_weighted_talk_head=True, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.sliding_window = sliding_window + + # for backward compatibility + if num_key_value_heads is None: + num_key_value_heads = num_attention_heads + + self.num_key_value_heads = num_key_value_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.use_cache = use_cache + self.rope_theta = rope_theta + self.attention_dropout = attention_dropout + self.max_thoughts = max_thoughts + self.merged_talk_heads = merged_talk_heads + self.merged_lm_and_talk_heads = merged_lm_and_talk_heads + self.merged_lm_and_think_heads = merged_lm_and_think_heads + self.use_concat_talk_head = use_concat_talk_head + self.use_shallow_think = use_shallow_think + self.use_shallow_talk = use_shallow_talk + self.use_complex_think_head = use_complex_think_head + self.use_complex_talk_head = use_complex_talk_head + self.use_weighted_talk_head = use_weighted_talk_head + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) + + +@add_start_docstrings( + "The bare Mistral Model outputting raw hidden-states without any specific head on top.", + MISTRAL_START_DOCSTRING, +) +class MistralPreTrainedModel(PreTrainedModel): + config_class = MistralConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["MistralDecoderLayer"] + _skip_keys_device_placement = "past_key_values" + _supports_flash_attn_2 = True + _supports_sdpa = True + _supports_cache_class = True + _supports_static_cache = True + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +@add_start_docstrings( + "The bare Mistral Model outputting raw hidden-states without any specific head on top.", + MISTRAL_START_DOCSTRING, +) +class MistralModel(MistralPreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`] + + Args: + config: MistralConfig + """ + + def __init__(self, config: MistralConfig): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) + self.layers = nn.ModuleList( + [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + self._attn_implementation = config._attn_implementation + self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if (input_ids is None) ^ (inputs_embeds is not None): + raise ValueError( + "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" + ) + + if self.gradient_checkpointing and self.training and use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + return_legacy_cache = False + if use_cache and not isinstance(past_key_values, Cache): + past_key_values = DynamicCache.from_legacy_cache(past_key_values) + return_legacy_cache = True + logger.warning_once( + "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. " + "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)" + ) + + if cache_position is None: + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + cache_position = torch.arange( + past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device + ) + + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + + causal_mask = self._update_causal_mask( + attention_mask, inputs_embeds, cache_position, past_key_values, use_cache, output_attentions + ) + + hidden_states = inputs_embeds + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + causal_mask, + position_ids, + past_key_values, + output_attentions, + use_cache, + cache_position, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=causal_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache = layer_outputs[2 if output_attentions else 1] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if return_legacy_cache: + next_cache = next_cache.to_legacy_cache() + + if not return_dict: + return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + def _update_causal_mask( + self, + attention_mask: torch.Tensor, + input_tensor: torch.Tensor, + cache_position: torch.Tensor, + past_key_values: Cache, + use_cache: bool, + output_attentions: bool, + ): + # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static + # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. + # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using + # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 + + if self._attn_implementation == "flash_attention_2": + if attention_mask is not None and use_cache: + is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] + if is_padding_right: + raise ValueError( + "You are attempting to perform batched generation with padding_side='right'" + " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to " + " call `tokenizer.padding_side = 'left'` before tokenizing the input. " + ) + if attention_mask is not None and 0.0 in attention_mask: + return attention_mask + return None + + # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in + # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail + # to infer the attention mask. + + # cache_position must be valid here no matter which cache we use + past_seen_tokens = cache_position[0] if past_key_values is not None else 0 + using_static_cache = isinstance(past_key_values, StaticCache) + using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) + + if ( + self.config._attn_implementation == "sdpa" + and not (using_static_cache or using_sliding_window_cache) + and not output_attentions + ): + if AttentionMaskConverter._ignore_causal_mask_sdpa( + attention_mask, + inputs_embeds=input_tensor, + past_key_values_length=past_seen_tokens, + sliding_window=self.config.sliding_window, + is_training=self.training, + ): + return None + + dtype, device = input_tensor.dtype, input_tensor.device + min_dtype = torch.finfo(dtype).min + sequence_length = input_tensor.shape[1] + # SlidingWindowCache + if using_sliding_window_cache: + target_length = max(sequence_length, self.config.sliding_window) + # StaticCache + elif using_static_cache: + target_length = past_key_values.get_max_length() + # DynamicCache or no cache + else: + target_length = ( + attention_mask.shape[-1] + if isinstance(attention_mask, torch.Tensor) + else past_seen_tokens + sequence_length + 1 + ) + + if attention_mask is not None and attention_mask.dim() == 4: + # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing + if attention_mask.max() != 0: + raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`") + causal_mask = attention_mask + else: + causal_mask = torch.full( + (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device + ) + exclude_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) + if self.config.sliding_window is not None: + if not using_sliding_window_cache or sequence_length > self.config.sliding_window: + exclude_mask.bitwise_or_( + torch.arange(target_length, device=device) + <= (cache_position.reshape(-1, 1) - self.config.sliding_window) + ) + causal_mask *= exclude_mask + causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) + if attention_mask is not None: + causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit + if attention_mask.dim() == 2: + mask_length = attention_mask.shape[-1] + padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] + padding_mask = padding_mask == 0 + causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( + padding_mask, min_dtype + ) + + if ( + self.config._attn_implementation == "sdpa" + and attention_mask is not None + and attention_mask.device.type == "cuda" + and not output_attentions + ): + # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when + # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. + # Details: https://github.com/pytorch/pytorch/issues/110213 + causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) + + return causal_mask + + +############################## LM Heads ################################# + + + + + + +################################ Tokenizer ############################## +class MistralTokenizer(PreTrainedTokenizer): + """ + Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is + no padding token in the original model. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""`): + The end of sequence token. + pad_token (`str` or `tokenizers.AddedToken`, *optional*): + A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by + attention mechanisms or loss computation. + sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + + add_bos_token (`bool`, *optional*, defaults to `True`): + Whether or not to add an `bos_token` at the start of sequences. + add_eos_token (`bool`, *optional*, defaults to `False`): + Whether or not to add an `eos_token` at the end of sequences. + clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): + Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like + extra spaces. + use_default_system_prompt (`bool`, *optional*, defaults to `False`): + Whether or not the default system prompt for Llama should be used. + spaces_between_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not to add spaces between special tokens. + legacy (`bool`, *optional*): + Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622 + and #25224 which includes fixes to properly handle tokens that appear after special tokens. + Make sure to also set `from_slow` to `True`. + A simple example: + + - `legacy=True`: + ```python + >>> from transformers import LlamaTokenizerFast + + >>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=True, from_slow=True) + >>> tokenizer.encode("Hello .") # 869 is '▁.' + [1, 15043, 29871, 1, 869] + ``` + - `legacy=False`: + ```python + >>> from transformers import LlamaTokenizerFast + + >>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=False, from_slow=True) + >>> tokenizer.encode("Hello .") # 29889 is '.' + [1, 15043, 29871, 1, 29889] + ``` + Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details. + add_prefix_space (`bool`, *optional*, defaults to `True`): + Whether or not to add an initial space to the input. This allows to treat the leading word just as any + other word. Again, this should be set with `from_slow=True` to make sure it's taken into account. + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + unk_token="", + bos_token="", + eos_token="", + pad_token=None, + sp_model_kwargs: Optional[Dict[str, Any]] = None, + add_bos_token=True, + add_eos_token=False, + clean_up_tokenization_spaces=False, + use_default_system_prompt=False, + spaces_between_special_tokens=False, + legacy=None, + add_prefix_space=True, + **kwargs, + ): + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token + eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token + unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token + pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token + + if legacy is None: + logger.warning_once( + f"You are using the default legacy behaviour of the {self.__class__}. This is" + " expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you." + " If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it" + " means, and thoroughly read the reason why this was added as explained in" + " https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file" + " you can ignore this message" + ) + legacy = True + + self.legacy = legacy + self.vocab_file = vocab_file + self.add_bos_token = add_bos_token + self.add_eos_token = add_eos_token + self.use_default_system_prompt = use_default_system_prompt + self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False)) + self.add_prefix_space = add_prefix_space + + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + pad_token=pad_token, + add_bos_token=add_bos_token, + add_eos_token=add_eos_token, + sp_model_kwargs=self.sp_model_kwargs, + clean_up_tokenization_spaces=clean_up_tokenization_spaces, + use_default_system_prompt=use_default_system_prompt, + spaces_between_special_tokens=spaces_between_special_tokens, + legacy=legacy, + add_prefix_space=add_prefix_space, + **kwargs, + ) + + @property + def unk_token_length(self): + return len(self.sp_model.encode(str(self.unk_token))) + + # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor + def get_spm_processor(self, from_slow=False): + tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs) + if self.legacy or from_slow: # no dependency on protobuf + tokenizer.Load(self.vocab_file) + return tokenizer + + with open(self.vocab_file, "rb") as f: + sp_model = f.read() + model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)") + model = model_pb2.ModelProto.FromString(sp_model) + normalizer_spec = model_pb2.NormalizerSpec() + normalizer_spec.add_dummy_prefix = False + model.normalizer_spec.MergeFrom(normalizer_spec) + sp_model = model.SerializeToString() + tokenizer.LoadFromSerializedProto(sp_model) + return tokenizer + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + state["sp_model_proto"] = self.sp_model.serialized_model_proto() + return state + + def __setstate__(self, d): + self.__dict__ = d + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.LoadFromSerializedProto(self.sp_model_proto) + + @property + def vocab_size(self): + """Returns vocab size""" + return self.sp_model.get_piece_size() + + def get_vocab(self): + """Returns vocab as a dict""" + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize + def tokenize(self, text: "TextInput", **kwargs) -> List[str]: + """ + Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the + first token is special. + """ + if self.legacy or len(text) == 0: + return super().tokenize(text, **kwargs) + + text = text.replace(SPIECE_UNDERLINE, " ") + if self.add_prefix_space: + text = SPIECE_UNDERLINE + text + + tokens = super().tokenize(text, **kwargs) + + if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens: + tokens = tokens[1:] + return tokens + + # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize + def _tokenize(self, text, **kwargs): + """ + Returns a tokenized string. + + We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any + SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give + `['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the + `unk_token`. Here is an example with `unk_token = ""` and `unk_token_length = 4`. + `self.tokenizer.sp_model.encode(" Hey", out_type = str)[4:]`. + """ + tokens = self.sp_model.encode(text, out_type=str) + if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")): + return tokens + + # 1. Encode string + prefix ex: " Hey" + tokens = self.sp_model.encode(self.unk_token + text, out_type=str) + # 2. Remove self.unk_token from ['<','unk','>', '▁Hey'] + return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.sp_model.piece_to_id(token) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + token = self.sp_model.IdToPiece(index) + return token + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + # since we manually add the prefix space, we have to remove it when decoding + if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space: + tokens[0] = tokens[0][1:] + + current_sub_tokens = [] + out_string = "" + prev_is_special = False + for i, token in enumerate(tokens): + # make sure that special tokens are not decoded using sentencepiece model + if token in self.all_special_tokens: + if not prev_is_special and i != 0 and self.legacy: + out_string += " " + out_string += self.sp_model.decode(current_sub_tokens) + token + prev_is_special = True + current_sub_tokens = [] + else: + if prev_is_special and i == 1 and self.add_prefix_space and not token.startswith(SPIECE_UNDERLINE): + out_string += " " + current_sub_tokens.append(token) + prev_is_special = False + out_string += self.sp_model.decode(current_sub_tokens) + return out_string + + def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]: + """ + Save the vocabulary and special tokens file to a directory. + + Args: + save_directory (`str`): + The directory in which to save the vocabulary. + + Returns: + `Tuple(str)`: Paths to the files saved. + """ + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) + + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + bos_token_id = [self.bos_token_id] if self.add_bos_token else [] + eos_token_id = [self.eos_token_id] if self.add_eos_token else [] + + output = bos_token_id + token_ids_0 + eos_token_id + + if token_ids_1 is not None: + output = output + bos_token_id + token_ids_1 + eos_token_id + + return output + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + bos_token_id = [1] if self.add_bos_token else [] + eos_token_id = [1] if self.add_eos_token else [] + + if token_ids_1 is None: + return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id + return ( + bos_token_id + + ([0] * len(token_ids_0)) + + eos_token_id + + bos_token_id + + ([0] * len(token_ids_1)) + + eos_token_id + ) + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT + sequence pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + if token_ids_1 is None, only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of ids. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + bos_token_id = [self.bos_token_id] if self.add_bos_token else [] + eos_token_id = [self.eos_token_id] if self.add_eos_token else [] + + output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) + + if token_ids_1 is not None: + output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) + + return output + + @property + def default_chat_template(self): + """ + LLaMA uses [INST] and [/INST] to indicate user messages, and <> and <> to indicate system messages. + Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict + user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering + rather than needing special tokens. The system message is partly 'embedded' in the first user message, which + results in an unusual token ordering when it is present. This template should definitely be changed if you wish + to fine-tune a model with more flexible role ordering! + + The output should look something like: + + [INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer [INST] Prompt [/INST] Answer + [INST] Prompt [/INST] + + The reference for this chat template is [this code + snippet](https://github.com/facebookresearch/llama/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/llama/generation.py#L320-L362) + in the original repository. + """ + template = ( + "{% if messages[0]['role'] == 'system' %}" + "{% set loop_messages = messages[1:] %}" # Extract system message if it's present + "{% set system_message = messages[0]['content'] %}" + "{% elif USE_DEFAULT_PROMPT == true and not '<>' in messages[0]['content'] %}" + "{% set loop_messages = messages %}" # Or use the default system message if the flag is set + "{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}" + "{% else %}" + "{% set loop_messages = messages %}" + "{% set system_message = false %}" + "{% endif %}" + "{% for message in loop_messages %}" # Loop over all non-system messages + "{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}" + "{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}" + "{% endif %}" + "{% if loop.index0 == 0 and system_message != false %}" # Embed system message in first message + "{% set content = '<>\\n' + system_message + '\\n<>\\n\\n' + message['content'] %}" + "{% else %}" + "{% set content = message['content'] %}" + "{% endif %}" + "{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way + "{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}" + "{% elif message['role'] == 'system' %}" + "{{ '<>\\n' + content.strip() + '\\n<>\\n\\n' }}" + "{% elif message['role'] == 'assistant' %}" + "{{ ' ' + content.strip() + ' ' + eos_token }}" + "{% endif %}" + "{% endfor %}" + ) + template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false") + default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'") + template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message) + + return template +class MistralTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. + + This uses notably ByteFallback and no normalization. + + ```python + >>> from transformers import LlamaTokenizerFast + + >>> tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer") + >>> tokenizer.encode("Hello this is a test") + [1, 15043, 445, 338, 263, 1243] + ``` + + If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or + call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the + values of the first token and final token of an encoded sequence will not be correct). For more details, checkout + [post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation. + + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`, *optional*): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that + contains the vocabulary necessary to instantiate a tokenizer. + tokenizer_file (`str`, *optional*): + [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that + contains everything needed to load the tokenizer. + clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): + Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like + extra spaces. + unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""`): + The end of sequence token. + add_bos_token (`bool`, *optional*, defaults to `True`): + Whether or not to add an `bos_token` at the start of sequences. + add_eos_token (`bool`, *optional*, defaults to `False`): + Whether or not to add an `eos_token` at the end of sequences. + use_default_system_prompt (`bool`, *optional*, defaults to `False`): + Whether or not the default system prompt for Llama should be used + legacy (`bool`, *optional*): + Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622 + and #25224 which includes fixes to properly handle tokens that appear after special tokens. + Make sure to also set `from_slow` to `True`. + A simple example: + + - `legacy=True`: + ```python + >>> from transformers import LlamaTokenizerFast + + >>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=True, from_slow=True) + >>> tokenizer.encode("Hello .") # 869 is '▁.' + [1, 15043, 29871, 1, 869] + ``` + - `legacy=False`: + ```python + >>> from transformers import LlamaTokenizerFast + + >>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=False, from_slow=True) + >>> tokenizer.encode("Hello .") # 29889 is '.' + [1, 15043, 29871, 1, 29889] + ``` + Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details. + add_prefix_space (`bool`, *optional*): + Whether or not the tokenizer should automatically add a prefix space + """ + + vocab_files_names = VOCAB_FILES_NAMES + slow_tokenizer_class = MistralTokenizer + padding_side = "left" + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + clean_up_tokenization_spaces=False, + unk_token="", + bos_token="", + eos_token="", + add_bos_token=True, + add_eos_token=False, + use_default_system_prompt=False, + legacy=None, + add_prefix_space=None, + **kwargs, + ): + if legacy is None: + logger.warning_once( + f"You are using the default legacy behaviour of the {self.__class__}. This is" + " expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you." + " If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it" + " means, and thoroughly read the reason why this was added as explained in" + " https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file" + " you can ignore this message." + ) + legacy = True + self.legacy = legacy + + if add_prefix_space is not None: + kwargs["from_slow"] = True + + super().__init__( + vocab_file=vocab_file, + tokenizer_file=tokenizer_file, + clean_up_tokenization_spaces=clean_up_tokenization_spaces, + unk_token=unk_token, + bos_token=bos_token, + eos_token=eos_token, + add_bos_token=add_bos_token, + add_eos_token=add_eos_token, + use_default_system_prompt=use_default_system_prompt, + add_prefix_space=add_prefix_space, + legacy=legacy, + **kwargs, + ) + self._add_bos_token = add_bos_token + self._add_eos_token = add_eos_token + self.update_post_processor() + self.use_default_system_prompt = use_default_system_prompt + self.vocab_file = vocab_file + + @property + def can_save_slow_tokenizer(self) -> bool: + return os.path.isfile(self.vocab_file) if self.vocab_file else False + + def update_post_processor(self): + """ + Updates the underlying post processor with the current `bos_token` and `eos_token`. + """ + bos = self.bos_token + bos_token_id = self.bos_token_id + if bos is None and self.add_bos_token: + raise ValueError("add_bos_token = True but bos_token = None") + + eos = self.eos_token + eos_token_id = self.eos_token_id + if eos is None and self.add_eos_token: + raise ValueError("add_eos_token = True but eos_token = None") + + single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}" + pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}" + + special_tokens = [] + if self.add_bos_token: + special_tokens.append((bos, bos_token_id)) + if self.add_eos_token: + special_tokens.append((eos, eos_token_id)) + self._tokenizer.post_processor = processors.TemplateProcessing( + single=single, pair=pair, special_tokens=special_tokens + ) + + @property + def add_eos_token(self): + return self._add_eos_token + + @property + def add_bos_token(self): + return self._add_bos_token + + @add_eos_token.setter + def add_eos_token(self, value): + self._add_eos_token = value + self.update_post_processor() + + @add_bos_token.setter + def add_bos_token(self, value): + self._add_bos_token = value + self.update_post_processor() + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not self.can_save_slow_tokenizer: + raise ValueError( + "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " + "tokenizer." + ) + + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): + copyfile(self.vocab_file, out_vocab_file) + + return (out_vocab_file,) + + @property + # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.default_chat_template + def default_chat_template(self): + """ + LLaMA uses [INST] and [/INST] to indicate user messages, and <> and <> to indicate system messages. + Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict + user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering + rather than needing special tokens. The system message is partly 'embedded' in the first user message, which + results in an unusual token ordering when it is present. This template should definitely be changed if you wish + to fine-tune a model with more flexible role ordering! + + The output should look something like: + + [INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer [INST] Prompt [/INST] Answer + [INST] Prompt [/INST] + + The reference for this chat template is [this code + snippet](https://github.com/facebookresearch/llama/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/llama/generation.py#L320-L362) + in the original repository. + """ + template = ( + "{% if messages[0]['role'] == 'system' %}" + "{% set loop_messages = messages[1:] %}" # Extract system message if it's present + "{% set system_message = messages[0]['content'] %}" + "{% elif USE_DEFAULT_PROMPT == true and not '<>' in messages[0]['content'] %}" + "{% set loop_messages = messages %}" # Or use the default system message if the flag is set + "{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}" + "{% else %}" + "{% set loop_messages = messages %}" + "{% set system_message = false %}" + "{% endif %}" + "{% for message in loop_messages %}" # Loop over all non-system messages + "{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}" + "{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}" + "{% endif %}" + "{% if loop.index0 == 0 and system_message != false %}" # Embed system message in first message + "{% set content = '<>\\n' + system_message + '\\n<>\\n\\n' + message['content'] %}" + "{% else %}" + "{% set content = message['content'] %}" + "{% endif %}" + "{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way + "{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}" + "{% elif message['role'] == 'system' %}" + "{{ '<>\\n' + content.strip() + '\\n<>\\n\\n' }}" + "{% elif message['role'] == 'assistant' %}" + "{{ ' ' + content.strip() + ' ' + eos_token }}" + "{% endif %}" + "{% endfor %}" + ) + template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false") + default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'") + template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message) + + return template + + # TODO ArthurZ let's rely on the template processor instead, refactor all fast tokenizers + # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + bos_token_id = [self.bos_token_id] if self.add_bos_token else [] + eos_token_id = [self.eos_token_id] if self.add_eos_token else [] + + output = bos_token_id + token_ids_0 + eos_token_id + + if token_ids_1 is not None: + output = output + bos_token_id + token_ids_1 + eos_token_id + + return output +################################ Tokenizer ############################## + + + + +################################ UNIVERSAL NN COMPONENTS ################################ +# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral + + + +# Copied from transformers.models.llama.modeling_llama._get_unpad_data +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +class MistralRMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + MistralRMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + +class MistralRotaryEmbedding(nn.Module): + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): + super().__init__() + + self.dim = dim + self.max_position_embeddings = max_position_embeddings + self.base = base + inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + @torch.no_grad() + # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.forward + def forward(self, x, position_ids): + # x: [bs, num_attention_heads, seq_len, head_size] + inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) + position_ids_expanded = position_ids[:, None, :].float() + # Force float32 since bfloat16 loses precision on long contexts + # See https://github.com/huggingface/transformers/pull/29285 + device_type = x.device.type + device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" + with torch.autocast(device_type=device_type, enabled=False): + freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) + emb = torch.cat((freqs, freqs), dim=-1) + cos = emb.cos() + sin = emb.sin() + return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) +################################ UNIVERSAL Functions ################################ +def nonzero_mean(x, axis=None): + if axis is not None: + return x.sum(axis) / (x != 0).sum(axis) + return x.sum() / (x != 0).sum() +def loss_mean(x): + return x.sum() / (x != 0).sum() + +# Copied from transformers.models.llama.modeling_llama.rotate_half +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) +# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb +def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`, *optional*): + Deprecated and unused. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + # The first two dimensions of cos and sin are always 1, so we can `squeeze` them. + cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] + sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] + cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] + sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] + q_embed = (q * cos[:,:, -q.shape[2]:]) + (rotate_half(q) * sin[:,:, -q.shape[2]:]) if q is not None else None + k_embed = (k * cos) + (rotate_half(k) * sin) if k is not None else None + return q_embed, k_embed + +def apply_grouped_rotary_pos_emb(q, k, cos, sin, position_ids, g_size_1=1, g_size_2=4096): + # The first two dimensions of cos and sin are always 1, so we can `squeeze` them. + position_ids_q = position_ids//g_size_1 + g_size_2 - g_size_2//g_size_1 + position_ids_k = position_ids//g_size_1 + + cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] + sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] + cos_q = cos[position_ids_q].unsqueeze(1) # [bs, 1, seq_len, dim] + sin_q = sin[position_ids_q].unsqueeze(1) # [bs, 1, seq_len, dim] + cos_k = cos[position_ids_k].unsqueeze(1) # [bs, 1, seq_len, dim] + sin_k = sin[position_ids_k].unsqueeze(1) # [bs, 1, seq_len, dim] + q_embed = (q * cos_q) + (rotate_half(q) * sin_q) if q is not None else None + k_embed = (k * cos_k) + (rotate_half(k) * sin_k) if k is not None else None + + return q_embed, k_embed + +def load_balancing_loss_func( + gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None +) -> float: + r""" + Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. + + See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss + function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between + experts is too unbalanced. + + Args: + gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): + Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of + shape [batch_size X sequence_length, num_experts]. + attention_mask (`torch.Tensor`, None): + The attention_mask used in forward function + shape [batch_size X sequence_length] if not None. + num_experts (`int`, *optional*): + Number of experts + + Returns: + The auxiliary loss. + """ + if gate_logits is None or not isinstance(gate_logits, tuple): + return 0 + + if isinstance(gate_logits, tuple): + compute_device = gate_logits[0].device + concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) + + routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) + + _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) + + expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) + + if attention_mask is None: + # Compute the percentage of tokens routed to each experts + tokens_per_expert = torch.mean(expert_mask.float(), dim=0) + + # Compute the average probability of routing to these experts + router_prob_per_expert = torch.mean(routing_weights, dim=0) + else: + batch_size, sequence_length = attention_mask.shape + num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) + + # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask + expert_attention_mask = ( + attention_mask[None, :, :, None, None] + .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) + .reshape(-1, top_k, num_experts) + .to(compute_device) + ) + + # Compute the percentage of tokens routed to each experts + tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( + expert_attention_mask, dim=0 + ) + + # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert + router_per_expert_attention_mask = ( + attention_mask[None, :, :, None] + .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) + .reshape(-1, num_experts) + .to(compute_device) + ) + + # Compute the average probability of routing to these experts + router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( + router_per_expert_attention_mask, dim=0 + ) + + overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) + return overall_loss * num_experts + +class MistralMLP(nn.Module): + def __init__(self, config): + super().__init__() + self.hidden_size = config.hidden_size + self.intermediate_size = config.intermediate_size + self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) + self.act_fn = ACT2FN[config.hidden_act] + + def forward(self, hidden_state): + return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) +# Copied from transformers.models.llama.modeling_llama.repeat_kv +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + +class MistralAttention(nn.Module): + """ + Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer + and "Generating Long Sequences with Sparse Transformers". + """ + + def __init__(self, config: MistralConfig, layer_idx: Optional[int] = None): + super().__init__() + self.config = config + self.layer_idx = layer_idx + if layer_idx is None: + logger.warning_once( + f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " + "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " + "when creating this class." + ) + + self.attention_dropout = config.attention_dropout + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.hidden_size // self.num_heads + self.num_key_value_heads = config.num_key_value_heads + self.num_key_value_groups = self.num_heads // self.num_key_value_heads + self.max_position_embeddings = config.max_position_embeddings + self.rope_theta = config.rope_theta + self.is_causal = True + + if (self.head_dim * self.num_heads) != self.hidden_size: + raise ValueError( + f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" + f" and `num_heads`: {self.num_heads})." + ) + self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) + self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) + self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) + self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) + + self.rotary_emb = MistralRotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + base=self.rope_theta, + ) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + cache_position: Optional[torch.LongTensor] = None, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + cos, sin = self.rotary_emb(value_states, position_ids) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + if past_key_value is not None: + # sin and cos are specific to RoPE models; cache_position needed for the static cache + cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + + if attention_mask is not None: # no matter the length, we just slice it + causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] + attn_weights = attn_weights + causal_mask + + # upcast attention to fp32 + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + + attn_output = attn_output.view(bsz, q_len, -1) + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value +class MistralFlashAttention2(MistralAttention): + """ + Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays + untouched. The only required change would be on the forward pass where it needs to correctly call the public API of + flash attention and deal with padding tokens in case the input contains any of them. + """ + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + cache_position: Optional[torch.LongTensor] = None, + ): + if isinstance(past_key_value, StaticCache): + raise ValueError( + "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` " + "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers" + ) + + output_attentions = False + + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += cache_position[0] + + cos, sin = self.rotary_emb(value_states, position_ids) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + if past_key_value is not None: + # Activate slicing cache only if the config has a value `sliding_windows` attribute + cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 + if ( + getattr(self.config, "sliding_window", None) is not None + and kv_seq_len > self.config.sliding_window + and cache_has_contents + ): + slicing_tokens = 1 - self.config.sliding_window + + past_key = past_key_value[self.layer_idx][0] + past_value = past_key_value[self.layer_idx][1] + + past_key = past_key[:, :, slicing_tokens:, :].contiguous() + past_value = past_value[:, :, slicing_tokens:, :].contiguous() + + if past_key.shape[-2] != self.config.sliding_window - 1: + raise ValueError( + f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" + f" {past_key.shape}" + ) + + if attention_mask is not None: + attention_mask = attention_mask[:, slicing_tokens:] + attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) + + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + # repeat k/v heads if n_kv_heads < n_heads + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + dropout_rate = 0.0 if not self.training else self.attention_dropout + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in float16 just to be sure everything works as expected. + input_dtype = query_states.dtype + if input_dtype == torch.float32: + if torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + # Handle the case where the model is quantized + elif hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + else: + target_dtype = self.q_proj.weight.dtype + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}." + ) + + query_states = query_states.to(target_dtype) + key_states = key_states.to(target_dtype) + value_states = value_states.to(target_dtype) + + # Reashape to the expected shape for Flash Attention + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + attn_output = _flash_attention_forward( + query_states, + key_states, + value_states, + attention_mask, + q_len, + dropout=dropout_rate, + sliding_window=getattr(self.config, "sliding_window", None), + use_top_left_mask=self._flash_attn_uses_top_left_mask, + is_causal=self.is_causal, + ) + + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value +# Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Mistral +class MistralSdpaAttention(MistralAttention): + """ + Mistral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from + `MistralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to + SDPA API. + """ + + # Adapted from MistralAttention.forward + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + cache_position: Optional[torch.LongTensor] = None, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if output_attentions: + + logger.warning_once( + "MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " + 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' + ) + return super().forward( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + ) + + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + cos, sin = self.rotary_emb(value_states, position_ids) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + if past_key_value is not None: + # sin and cos are specific to RoPE models; cache_position needed for the static cache + cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + causal_mask = attention_mask + if attention_mask is not None: + causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] + + # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, + # Reference: https://github.com/pytorch/pytorch/issues/112577. + if query_states.device.type == "cuda" and causal_mask is not None: + query_states = query_states.contiguous() + key_states = key_states.contiguous() + value_states = value_states.contiguous() + + # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment + # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. + is_causal = True if causal_mask is None and q_len > 1 else False + + attn_output = torch.nn.functional.scaled_dot_product_attention( + query_states, + key_states, + value_states, + attn_mask=causal_mask, + dropout_p=self.attention_dropout if self.training else 0.0, + is_causal=is_causal, + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.view(bsz, q_len, -1) + + attn_output = self.o_proj(attn_output) + + return attn_output, None, past_key_value +MISTRAL_ATTENTION_CLASSES = { + "eager": MistralAttention, + "flash_attention_2": MistralFlashAttention2, + "sdpa": MistralSdpaAttention, +} + +# Copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->Mistral, LLAMA->MISTRAL +class MistralDecoderLayer(nn.Module): + def __init__(self, config: MistralConfig, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + + self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) + + self.mlp = MistralMLP(config) + self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + cache_position: Optional[torch.LongTensor] = None, + **kwargs, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): + attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, + query_sequence_length, key_sequence_length)` if default attention is used. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence + kwargs (`dict`, *optional*): + Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code + into the model + """ + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + **kwargs, + ) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + return outputs + +class MixtralBlockSparseTop2MLP(nn.Module): + def __init__(self, config: MixtralConfig): + super().__init__() + self.ffn_dim = config.intermediate_size + self.hidden_dim = config.hidden_size + + self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) + self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) + self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) + + self.act_fn = ACT2FN[config.hidden_act] + + def forward(self, hidden_states): + current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states) + current_hidden_states = self.w2(current_hidden_states) + return current_hidden_states +class MixtralSparseMoeBlock(nn.Module): + """ + This implementation is + strictly equivalent to standard MoE with full capacity (no + dropped tokens). It's faster since it formulates MoE operations + in terms of block-sparse operations to accomodate imbalanced + assignments of tokens to experts, whereas standard MoE either + (1) drop tokens at the cost of reduced performance or (2) set + capacity factor to number of experts and thus waste computation + and memory on padding. + """ + + def __init__(self, config): + super().__init__() + self.hidden_dim = config.hidden_size + self.ffn_dim = config.intermediate_size + self.num_experts = config.num_local_experts + self.top_k = config.num_experts_per_tok + + # gating + self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False) + + self.experts = nn.ModuleList([MixtralBlockSparseTop2MLP(config) for _ in range(self.num_experts)]) + + # Jitter parameters + self.jitter_noise = config.router_jitter_noise + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + """ """ + batch_size, sequence_length, hidden_dim = hidden_states.shape + if self.training and self.jitter_noise > 0: + hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise) + hidden_states = hidden_states.view(-1, hidden_dim) + # router_logits: (batch * sequence_length, n_experts) + router_logits = self.gate(hidden_states) + + routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) + routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) + routing_weights /= routing_weights.sum(dim=-1, keepdim=True) + # we cast back to the input dtype + routing_weights = routing_weights.to(hidden_states.dtype) + + final_hidden_states = torch.zeros( + (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device + ) + + # One hot encode the selected experts to create an expert mask + # this will be used to easily index which expert is going to be sollicitated + expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) + + # Loop over all available experts in the model and perform the computation on each expert + for expert_idx in range(self.num_experts): + expert_layer = self.experts[expert_idx] + idx, top_x = torch.where(expert_mask[expert_idx]) + + # Index the correct hidden states and compute the expert hidden state for + # the current expert. We need to make sure to multiply the output hidden + # states by `routing_weights` on the corresponding tokens (top-1 and top-2) + current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) + current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] + + # However `index_add_` only support torch tensors for indexing so we'll use + # the `top_x` tensor here. + final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) + final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) + return final_hidden_states, router_logits +class MixtralDecoderLayer(nn.Module): + def __init__(self, config: MixtralConfig, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + + self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) + self.mlp = MistralMLP(config) + self.block_sparse_moe = MixtralSparseMoeBlock(config) + self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + output_router_logits: Optional[bool] = False, + use_cache: Optional[bool] = False, + cache_position: Optional[torch.LongTensor] = None, + **kwargs, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): attention mask of size + `(batch, sequence_length)` where padding elements are indicated by 0. + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_router_logits (`bool`, *optional*): + Whether or not to return the logits of all the routers. They are useful for computing the router loss, and + should not be returned during inference. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence. + kwargs (`dict`, *optional*): + Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code + into the model + """ + + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + ) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states, router_logits = self.block_sparse_moe(hidden_states) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + if output_router_logits: + outputs += (router_logits,) + + return outputs + +################################ closed COMPONENTS ################################ + + +############# Causal LM ################# +class MistralForCausalLM(MistralPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.model = MistralModel(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + self.max_thoughts = config.max_thoughts + self.merged_lm_and_talk_heads = config.merged_lm_and_talk_heads + self.use_concat_talk_head = config.use_concat_talk_head + self.use_shallow_talk = config.use_shallow_talk + self.use_complex_talk_head = config.use_complex_talk_head + self.use_weighted_talk_head = config.use_weighted_talk_head + # the weighted head will output a single value, so it can't be passed to the lm head + assert not (self.use_weighted_talk_head and self.use_shallow_talk) + + self.n_ahead = 1 + self.n_ahead_talk = 1 + self.n_passes = 1 + self.n_tokens_print = 1 + self.gradient_accumulation_steps = 1 + self.training_steps = 0 + self.tokenizer = None + self.start_token_id = None + self.end_token_id = None + self.rm_initialized = False + self.residual_talk_head = True + self.thought_init_std_scale = 1e-2 + + self.final_only_mode = False + self.first_and_last_mode = True + self.first_only = False + self.original_loss_weight = 0.5 + + self.cumulative_residual = False + self.clever_residual = False + self.skip_residual = False + self.no_residual = True + + self.optimize_lm_head_only_at_start = False + self.optimize_model_only_at_start = False + + if self.optimize_model_only_at_start: + raise NotImplementedError + self.train_only_thinking_embedding = False + self.weighted_embeddings = False + self.use_start_thought_token = True + self.use_end_thought_token = True + self.initialize_thought_embedding_to_normal = False + self.initial_start_token = "---" + self.initial_end_token = "---" + self.output_logits_at_the_end = True + + self.gumbel_temperature = 0.001 + + self.use_policy_loss = True + self.include_policy_loss = True + self.trice_mode = True + self.remove_negative_rewards = True + self.use_policy_loss_for_end_thought = True + + self.base_original_mode = False + self.original_mode = False + + self.thought_prefix = "(Let's think step by step" + self.tokenized_thought_prefix = None + self.log_dict = defaultdict(int) + self.eval_log_dict = defaultdict(int) + self.print_final_only = True + self.loss_mean = loss_mean + self.all_rewards = [] + self.all_unreduced_losses = [] + self.kill_after = 100 + + self.start_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size)) + self.end_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size)) + + self.policy_loss_beta = 1e6 + self.embedding_scale = 1e2 + self.reinforce_temperature = 3 + self.base_loss_beta = 1 + + # Not used in the paper: + self.use_thought_prefix = False + self.use_reparam_for_thought_embeddings = False + self.use_upper_triangular = False + self.subtract_mean_reward = False + self.comparison_mode = False + self.gumbel_detach = True + + # For visualization + self.eval_mode = False + + num_talk = 1 + talk_input_dim = config.hidden_size if not self.use_concat_talk_head else config.hidden_size * 2 + if self.use_weighted_talk_head: + talk_output_dim = 1 + else: + talk_output_dim = config.hidden_size if self.use_shallow_talk else config.vocab_size + + if not self.merged_lm_and_talk_heads: + if self.use_complex_talk_head: + self.talk_head = nn.ModuleList([nn.Sequential( + nn.Linear(talk_input_dim, config.hidden_size), + nn.ReLU(), + nn.Linear(config.hidden_size, config.hidden_size), + nn.ReLU(), + nn.Linear(config.hidden_size, talk_output_dim, bias=False) + )]) + else: + self.talk_head = nn.ModuleList([nn.Sequential( + nn.Linear(talk_input_dim, talk_output_dim, bias=False) + )]) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + def calculate_policy_loss(self, thoughts, rewards): + thought_log_probs = [] + for thought in thoughts: + thought_log_prob = self.lm_head(thought).log_softmax(dim=-1) + thought_log_probs.append(thought_log_prob) + + thought_log_probs = torch.stack(thought_log_probs, dim=1) # (batch_size, num_thoughts, seq_length, vocab_size) + thought_probs = torch.exp(thought_log_probs) + + policy_loss = -torch.mean(thought_log_probs * rewards.unsqueeze(-1).unsqueeze(-1)) + + return policy_loss + + def _generate_thoughts(self, hidden_states, max_length): + batch_size = hidden_states.size(0) + thought_ids = torch.zeros((batch_size, self.config.max_thoughts, max_length), dtype=torch.long, device=hidden_states.device) + thought_embeddings = [] + + for i in range(self.config.max_thoughts): + thought_input_ids = torch.zeros((batch_size, 1), dtype=torch.long, device=hidden_states.device) + thought_outputs = self.generate( + input_ids=thought_input_ids, + max_length=max_length, + do_sample=True, + top_k=50, + top_p=0.95, + pad_token_id=self.config.pad_token_id, + eos_token_id=self.config.eos_token_id, + ) + thought_ids[:, i, :] = thought_outputs + thought_embeddings.append(self.get_input_embeddings()(thought_outputs)) + + thought_embeddings = torch.stack(thought_embeddings, dim=1) + return thought_ids, thought_embeddings + + @torch.no_grad() + def infer( + self, + input_ids: torch.LongTensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + batch_size, seq_len = input_ids.shape + + # Save the original input_ids and attention_mask for later use + original_input_ids = input_ids.clone() + original_attention_mask = attention_mask.clone() if attention_mask is not None else None + + # Append the start thought token to the input sequence + start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>") + input_ids = torch.cat([input_ids, torch.tensor([[start_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1) + seq_len += 1 + + # Update the attention mask + if attention_mask is not None: + attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) + + # Generate the continuation + continuation_length = self.n_ahead - 2 + new_key_values = past_key_values + + start_time = time.time() + for continuation_idx in range(continuation_length): + outputs = self.model( + input_ids=input_ids if continuation_idx == 0 else next_token_id.unsqueeze(-1).to(input_ids.device), + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=new_key_values, + inputs_embeds=inputs_embeds, + use_cache=True, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + new_key_values = outputs.past_key_values + + hidden_states = outputs[0] + + logits = self.lm_head(hidden_states) + logits = logits[:, -1, :] # Only consider the last token + + # Apply Gumbel-Softmax to the logits + next_token_logits = F.gumbel_softmax(logits, tau=self.gumbel_temperature, hard=True, dim=-1) + next_token_id = torch.argmax(next_token_logits, dim=-1) + + # Append the generated token to the input sequence + input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1).to(input_ids.device)], dim=-1) + seq_len += 1 + + # Update the attention mask + if attention_mask is not None: + attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) + + # Append the end thought token to the input sequence + end_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>") + input_ids = torch.cat([input_ids, torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1) + seq_len += 1 + + # Update the attention mask + if attention_mask is not None: + attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) + + # Get the hidden states before and after the thought + outputs_before = self.model( + input_ids=original_input_ids, + attention_mask=original_attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states_before = outputs_before[0][:, -1:, :] + + # two new tokens: last continuation token and end thought token + outputs_after = self.model( + input_ids=torch.cat([next_token_id.unsqueeze(-1).to(input_ids.device), torch.tensor(end_thought_token_id).unsqueeze(-1).unsqueeze(-1).to(input_ids.device)], dim=-1), + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=new_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states_after = outputs_after[0][:, -1:, :] + + # Apply the talk head to get the mixing weight + mixing_weight = self.talk_head[0](torch.cat([hidden_states_before, hidden_states_after], dim=-1)) + + # Apply the mixing weight to the hidden states + mixed_hidden_states = (1 - mixing_weight) * hidden_states_before + mixing_weight * hidden_states_after + + # Apply the language model head to get the final logits + logits = self.lm_head(mixed_hidden_states) + return logits + + @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, MistralForCausalLM + + >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") + >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + log_dict = self.log_dict if self.training else self.eval_log_dict + + if self.training and self.kill_after is not None and self.training_steps // self.gradient_accumulation_steps > self.kill_after: + raise ValueError("Killed after") + + if not self.training: + n_ahead_talk_to_restore = self.n_ahead_talk + n_passes_to_restore = self.n_passes + self.n_ahead_talk = 1 + self.n_passes = 1 + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + assert self.cumulative_residual or self.clever_residual or self.skip_residual or self.no_residual + assert not (self.skip_residual and self.use_policy_loss) + + if self.tokenized_thought_prefix is None and self.use_thought_prefix: + self.tokenized_thought_prefix = self.tokenizer(self.thought_prefix, return_tensors="pt", add_special_tokens=False)["input_ids"] + + def apply_head(head, states, detach=False): + if detach: + head_weight = head.weight.detach() + else: + head_weight = head.weight + head_weight = head_weight.to(states.device) + return (head_weight @ states.transpose(-1, -2)).transpose(-1, -2).contiguous() + + def idx_if_sequential(head, idx=0): + if isinstance(head, nn.Sequential) or isinstance(head, nn.ModuleList): + return idx_if_sequential(head[idx], idx=idx) + return head + + def none_repeat_interleave(x, n): + if x is None: + return x + return x.repeat_interleave(n, dim=0) + + if self.n_passes > 1: + input_ids = none_repeat_interleave(input_ids, self.n_passes) + attention_mask = none_repeat_interleave(attention_mask, self.n_passes) + position_ids = none_repeat_interleave(position_ids, self.n_passes) + inputs_embeds = none_repeat_interleave(inputs_embeds, self.n_passes) + labels = none_repeat_interleave(labels, self.n_passes) + if past_key_values is not None: + past_key_values = [none_repeat_interleave(p, self.n_passes) for p in past_key_values] + cur_token_indices = torch.arange(input_ids.shape[1], device=input_ids.device) + + self.tokenizer_has_start_thought_token = True + self.tokenizer_has_end_thought_token = True + if self.start_token_id is None: + self.start_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>") + if self.start_token_id == 0: + self.start_token_id = self.tokenizer.bos_token_id + self.tokenizer_has_start_thought_token = False + elif self.use_start_thought_token: + # base_start_id = self.tokenizer.convert_tokens_to_ids(self.initial_start_token) + base_start_id = self.tokenizer.encode(self.initial_start_token, add_special_tokens=False)[0] + if self.initialize_thought_embedding_to_normal: + self.start_embedding.data = torch.zeros_like(self.start_embedding.data) + else: + self.start_embedding.data[0] = self.model.embed_tokens.weight.data[base_start_id].clone().detach() / self.embedding_scale + self.start_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale) + if self.end_token_id is None: + self.end_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>") + if self.end_token_id == 0: + self.end_token_id = self.tokenizer.eos_token_id + self.tokenizer_has_end_thought_token = False + elif self.use_end_thought_token: + # base_end_id = self.tokenizer.convert_tokens_to_ids(self.initial_end_token) + base_end_id = self.tokenizer.encode(self.initial_end_token, add_special_tokens=False)[0] + if self.initialize_thought_embedding_to_normal: + self.end_embedding.data = torch.zeros_like(self.end_embedding.data) + else: + self.end_embedding.data[0] = self.model.embed_tokens.weight.data[base_end_id].clone().detach() / self.embedding_scale + self.end_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale) + + if not self.rm_initialized and (self.n_ahead > 1 or not self.base_original_mode): + self.rm_initialized = True + if not self.use_shallow_talk: + head = self.talk_head[0] + cur_head = head[-1] if isinstance(head, nn.Sequential) else head + talk_input_dim = cur_head.weight.data.shape[1] + talk_output_dim = 1 if self.use_weighted_talk_head else self.lm_head.weight.data.shape[0] + cur_head.weight.data = torch.zeros(talk_output_dim, talk_input_dim, device=cur_head.weight.device, dtype=cur_head.weight.dtype) + else: + # convert to identity transform + def lambda_transform(cur_head): + if cur_head.weight.data.shape[0] != cur_head.weight.data.shape[1]: + return torch.cat([ + torch.eye( + cur_head.weight.data.shape[0], + device=cur_head.weight.device, + dtype=cur_head.weight.dtype + ), + torch.zeros( + cur_head.weight.data.shape[0], + cur_head.weight.data.shape[1] - cur_head.weight.data.shape[0], + device=cur_head.weight.device, + dtype=cur_head.weight.dtype + )], dim=1) + return torch.eye( + cur_head.weight.data.shape[0], + device=cur_head.weight.device, + dtype=cur_head.weight.dtype + ) + if isinstance(self.talk_head[0], nn.Sequential): + for cur_head in self.talk_head[0]: + # if it has weights + if hasattr(cur_head, "weight"): + cur_head.weight.data = lambda_transform(cur_head) + else: + self.talk_head[-1].weight.data = lambda_transform(self.talk_head[0]) + + loss = None + prev_rm_tokens = None + cur_rm_tokens = None + prev_rm_logits = None + prev_sample_probs = None + did_skip_sampling = None + skip_sampling = None + sample_probs = None + hidden_states = None + logits = None + talk_kl_penalty = None + rm_logits = None + residual_logits = None + probabilities_2d = None + prev_probabilities_2d = None + policy_reward = None + logits_to_output = None + batch_size, seq_len = input_ids.shape + base_input_ids = input_ids.clone() + loss_list = [] + dqn_loss_list = [] + sampled_token_history = [] + sample_probs_history = [] + action_loglikelihoods_list = [] + + if self.use_end_thought_token or self.use_start_thought_token: + if not self.use_reparam_for_thought_embeddings: + start_embedding = self.start_embedding[0].unsqueeze(0) * self.embedding_scale + end_embedding = self.end_embedding[0].unsqueeze(0) * self.embedding_scale + else: + start_embedding = self.start_embedding * self.embedding_scale + end_embedding = self.end_embedding * self.embedding_scale + base_embeddings = self.model.embed_tokens.weight + if self.train_only_thinking_embedding: + base_embeddings = base_embeddings.detach() + # # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + fwd_iters = 1 if self.original_mode else self.n_ahead + self.n_ahead_talk - 1 + for ahead_idx in range(fwd_iters): + past_key_values_length = 0 + if past_key_values is not None: + use_legacy_cache = not isinstance(past_key_values, Cache) + if use_legacy_cache: + past_key_values = DynamicCache.from_legacy_cache(past_key_values) + past_key_values_length = past_key_values.get_usable_length(seq_len) + + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange( + past_key_values_length, seq_len + past_key_values_length, dtype=torch.long, device=device + ) + position_ids = position_ids.unsqueeze(0).view(-1, seq_len) + else: + position_ids = position_ids.view(-1, seq_len).long() + + if inputs_embeds is None: + contains_start = self.use_start_thought_token and (input_ids == self.start_token_id).any() + contains_end = self.use_end_thought_token and (input_ids == self.end_token_id).any() + contains_thought = contains_start or contains_end + if contains_thought: + thought_id = self.start_token_id if contains_start else self.end_token_id + cur_thought_embedding = start_embedding if contains_start else end_embedding + if self.use_reparam_for_thought_embeddings: + inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype) + inputs_embeds = inputs_embeds.detach() * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0] + if contains_start: + sampled_start = inputs_embeds.clone().detach() + if contains_end: + sampled_end = inputs_embeds.clone().detach() + else: + inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1) + else: + with torch.set_grad_enabled(not self.train_only_thinking_embedding): + inputs_embeds = self.model.embed_tokens(input_ids) + + if self.n_ahead != 1 or self.n_ahead_talk != 1 or self.comparison_mode: + if attention_mask is None: + base_attention_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=0).to(input_ids.device) + base_attention_mask = base_attention_mask.view(1, 1, seq_len, seq_len) + base_attention_mask = base_attention_mask.repeat(input_ids.shape[0], 1, 1, 1) + attention_mask = base_attention_mask + breakpoint() + elif attention_mask.dim() == 2: + if seq_len + past_key_values_length != attention_mask.shape[-1]: + breakpoint() + attention_mask = torch.cat( + [torch.ones((attention_mask.shape[0], past_key_values_length), dtype=attention_mask.dtype, device=attention_mask.device), attention_mask], + dim=-1 + ) + # # if the attention mask + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, + (batch_size, seq_len), + inputs_embeds, + past_key_values_length, + sliding_window=self.config.sliding_window, + ) + + outputs = self.model( + # input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + prev_hidden_states = hidden_states + hidden_states = outputs[0] + prev_rm_logits = rm_logits # for policy gradient + prev_rm_tokens = cur_rm_tokens # for policy gradient + + if ahead_idx == 0: + hidden_states_lm = hidden_states + logits = self.lm_head(hidden_states_lm) + base_hidden_states = hidden_states.clone() + initial_loss_logits = logits.clone() + if self.optimize_lm_head_only_at_start or self.optimize_model_only_at_start: + logits = logits.detach() + base_hidden_states = base_hidden_states.detach() + if self.optimize_model_only_at_start: + hidden_states = hidden_states.detach() + base_logits = logits.clone() + else: + talk_hidden_states = hidden_states + if self.merged_lm_and_talk_heads: + assert self.no_residual + residual_logits = self.lm_head(hidden_states) + talk_hidden_states = hidden_states + else: + if ahead_idx > self.n_ahead - 1: + cur_base_hidden = torch.cat([ + base_hidden_states[..., ahead_idx - self.n_ahead + 1:, :], + base_hidden_states[..., :ahead_idx - self.n_ahead + 1, :] + ], dim=-2) + else: + cur_base_hidden = base_hidden_states + + if self.use_concat_talk_head: + # concatenate the hidden states with the original hidden states + head_input_hidden_states = torch.cat([cur_base_hidden, talk_hidden_states], dim=-1) + else: + head_input_hidden_states = talk_hidden_states + + residual_logits = self.talk_head[0](head_input_hidden_states) + if self.use_shallow_talk: + residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start) + residual_logits = residual_logits.to(logits.device) + if self.use_weighted_talk_head: + # combine the cur_base_hidden with the talk_hidden_states according to the weighted head + residual_logits = cur_base_hidden * (1 - residual_logits) + talk_hidden_states * residual_logits + residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start) + + assert sum([self.cumulative_residual, self.clever_residual, self.skip_residual, self.no_residual]) == 1 + if self.clever_residual: + if ahead_idx >= self.n_ahead - 1: + # get the logits shifted according to the current talk ahead + cur_base_logits = torch.cat([ + base_logits[..., ahead_idx - self.n_ahead + 1:, :], + base_logits[..., :ahead_idx - self.n_ahead + 1, :] + ], dim=-2) + if self.optimize_lm_head_only_at_start: + cur_base_logits = cur_base_logits.detach() + logits = cur_base_logits + residual_logits + else: + logits += residual_logits / self.n_ahead + elif self.cumulative_residual: + if self.residual_talk_head: + if ahead_idx < self.n_ahead: + logits += residual_logits + else: + # get the logits shifted according to the current talk ahead + cur_base_logits = torch.cat([ + base_logits[..., ahead_idx - self.n_ahead + 1:, :], + base_logits[..., :ahead_idx - self.n_ahead + 1, :] + ], dim=-2) + if self.optimize_lm_head_only_at_start: + cur_base_logits = cur_base_logits.detach() + logits = cur_base_logits + residual_logits + else: + if ahead_idx < self.n_ahead: + logits += residual_logits + else: + logits = residual_logits + elif self.skip_residual: + if ahead_idx >= self.n_ahead: + # get the logits shifted according to the current talk ahead + cur_base_logits = torch.cat([ + base_logits[..., ahead_idx - self.n_ahead + 1:, :], + base_logits[..., :ahead_idx - self.n_ahead + 1, :] + ], dim=-2) + if self.optimize_lm_head_only_at_start: + cur_base_logits = cur_base_logits.detach() + logits = cur_base_logits + elif self.no_residual: + logits = residual_logits + else: + logits = base_logits + residual_logits + + attempted = False + talk_loss_list = [] + if self.original_mode or (self.n_ahead == 1) or (self.comparison_mode and ahead_idx == 0):# or (self.optimize_lm_head_only_at_start and ahead_idx == 0): + loss = None + attempted = True + + if labels is not None: + for shift_amount in range(self.n_ahead_talk): + # Shift so that tokens < n predict n + # ab[cde]f + # abc[def] + if ahead_idx == 0 and self.optimize_lm_head_only_at_start: + loss_logits = initial_loss_logits + else: + loss_logits = logits + shift_logits = loss_logits[..., shift_amount:-1, :].contiguous() + shift_labels = labels[..., 1 + shift_amount:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss(reduction="none") + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1).clone() + # Enable model parallelism + shift_labels[shift_labels == self.tokenizer.pad_token_id] = -100 + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + if not self.comparison_mode and not (self.optimize_lm_head_only_at_start and (self.n_ahead + self.n_ahead_talk > 2)) or self.original_mode: + loss_list.append(loss) + talk_loss_list.append(nonzero_mean(loss).detach()) + + if not attempted or self.comparison_mode: + rm_hidden_states = hidden_states + # print("Magnitude of RM hidden states before RM head", rm_hidden_states.norm()) + rm_logits = apply_head(self.lm_head, rm_hidden_states, detach=self.optimize_lm_head_only_at_start) + + # don't allow it to predict the thinking token + if self.tokenizer_has_start_thought_token: + rm_logits[..., self.start_token_id] = -1e10 + if self.tokenizer_has_end_thought_token: + rm_logits[..., self.end_token_id] = -1e10 + probabilities = rm_logits + if probabilities_2d is not None: + prev_probabilities_2d = probabilities_2d.clone() + probabilities_2d = probabilities.view(-1, probabilities.size(-1)) + + did_skip_sampling = skip_sampling + skip_sampling = False + if ahead_idx == 0 and self.use_start_thought_token: + override_token = self.start_token_id + elif self.use_thought_prefix and ahead_idx < self.tokenized_thought_prefix.shape[-1]: + override_token = self.tokenized_thought_prefix[..., ahead_idx] + elif ahead_idx == self.n_ahead - 2 and self.use_end_thought_token: + override_token = self.end_token_id + else: + override_token = None + if override_token is not None and self.n_ahead > 1: + # always start with the start token + probabilities_2d = torch.zeros_like(probabilities_2d) + probabilities_2d[:, override_token] = 1.0 + skip_sampling = True + elif ahead_idx >= self.n_ahead - 1: + if labels is not None: # we're in the talk phase + cur_talk_n = ahead_idx - (self.n_ahead - 1) + 1 + # print("Setting rm to labels", cur_talk_n, "during", ahead_idx) + shift_labels = labels[..., cur_talk_n:].contiguous().to(probabilities_2d.device) + padding = torch.full_like( + labels[..., :cur_talk_n], + self.tokenizer.pad_token_id, + dtype=torch.long, + device=shift_labels.device + ) + new_rm_tokens = torch.cat( + [shift_labels, padding], + dim=-1 + ) + # convert rm tokens to one-hot + probabilities_2d = F.one_hot(new_rm_tokens, num_classes=self.vocab_size).reshape(-1, self.vocab_size).to(probabilities_2d.dtype) + skip_sampling = True + else: + continue + temperature = self.gumbel_temperature if self.training else 0.001 + prev_sample_probs = sample_probs + sample_probs = probabilities_2d + if ahead_idx < self.n_ahead - 1 and not skip_sampling: + probabilities_2d = F.gumbel_softmax(sample_probs, tau=temperature, hard=True, dim=-1) + if self.gumbel_detach: + probabilities_2d = probabilities_2d.detach() + sampled_token_history.append(probabilities_2d.argmax(dim=-1).detach().cpu()) + # convert rm logits directly to embeddings + contains_start = self.use_start_thought_token and (probabilities_2d[..., self.start_token_id].sum() > 0) + contains_end = self.use_end_thought_token and (probabilities_2d[..., self.end_token_id].sum() > 0) + contains_thought = contains_start or contains_end + + if not contains_thought: + with torch.set_grad_enabled(not self.train_only_thinking_embedding): + inputs_embeds = probabilities_2d @ (self.model.embed_tokens.weight.to(probabilities.device).to(probabilities.dtype)) + else: + thought_id = self.start_token_id if contains_start else self.end_token_id + cur_thought_embedding = start_embedding if contains_start else end_embedding + if self.use_reparam_for_thought_embeddings: + inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype) + inputs_embeds = inputs_embeds * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0] + if contains_start: + sampled_start = inputs_embeds.clone().detach() + else: + sampled_end = inputs_embeds.clone().detach() + else: + inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1) + inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype) + inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype) + + if len(attention_mask.shape) == 2: + breakpoint() + else: + original_attention = attention_mask[..., :attention_mask.shape[-2]] + if self.use_upper_triangular: + new_attention = original_attention + else: + original_attention = original_attention == attention_mask.max() + # because eye isn't implemented for BF16, we need to handle the case + if not attention_mask.dtype == torch.bfloat16: + new_attention = torch.eye( + seq_len, dtype=attention_mask.dtype, device=attention_mask.device + ) + else: + new_attention = torch.eye( + seq_len, dtype=torch.float32, device=attention_mask.device + ).to(attention_mask.dtype) + + new_attention = new_attention.view(1, 1, seq_len, seq_len).repeat(input_ids.shape[0], 1, 1, 1) + new_attention = new_attention * original_attention + new_attention[new_attention == 0] = attention_mask.min() + new_attention[new_attention == 1] = attention_mask.max() + attention_mask = torch.cat([attention_mask, new_attention], dim=-1) + past_key_values = outputs.past_key_values + position_ids = position_ids + 1 + + if labels is not None and (self.n_ahead > 1 or not self.base_original_mode): + # Shift so that tokens < n predict n + # logits: abcdef -> bcdef? -> cdef?? + # labels: abcdef -> ?bcdef -> ??cdef + if ahead_idx == 0 and self.optimize_lm_head_only_at_start: + loss_logits = initial_loss_logits + else: + loss_logits = logits + shift_idx = 1 + max(0, ahead_idx - (self.n_ahead - 1)) + shift_logits = loss_logits[..., :-shift_idx, :].contiguous() + shift_labels = labels[..., shift_idx:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss(reduction="none") + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + # if shift_labels.min() == self.tokenizer.pad_token_id: + shift_labels = torch.where(shift_labels == self.tokenizer.pad_token_id, -100, shift_labels) + unreduced_loss = loss_fct(shift_logits, shift_labels) + if torch.any(unreduced_loss != unreduced_loss): + raise ValueError("NaN loss") + unreduced_loss = unreduced_loss.reshape(logits.shape[0], -1) + loss_list.append(unreduced_loss) + + + if self.use_policy_loss and ahead_idx > 0 and (ahead_idx > 1 or not self.use_start_thought_token): + # we treat the change in loss as the reward + previous_loss = loss_list[-2] + # for example, suppose n_ahead = 3 and n_ahead_talk = 2 + # note that we end at self.n_ahead + self.n_ahead_talk - 2 + # in this case, 5 - 2 = 3, so we end at ahead_idx = 3 + # we also predict the next token at ahead_idx = 2 + # when we get to ahead_idx = 2, we predict ahead + # so we shift by 1 + # note that this is ahead_idx = n_ahead - 1 + # when we get to ahead_idx = 3, we predict ahead + # so we shift by 2 + # note that this is ahead_idx = n_ahead + if ahead_idx < self.n_ahead - 1: + shift_amount = 0 + original_dqn_reward = (previous_loss - unreduced_loss).detach() + if self.first_and_last_mode: + original_dqn_reward = original_dqn_reward * 0.0 + else: + # logits vs cur_policy_shift_logits + # let's look at rm_logits and prev_rm_logits + shift_amount = max(0, ahead_idx - (self.n_ahead - 1)) + # let's say shift_amount = 2 + # abcdefg -> bcdefg? -> cdefg?? + # logits = [a b]c d e f[g] + # labels = [a b c]d e f g + cur_policy_shift_logits = initial_loss_logits[..., shift_amount:-1, :].contiguous().detach() + cur_policy_shift_labels = labels[..., 1 + shift_amount:].contiguous() + # Flatten the tokens + cur_policy_loss_fct = CrossEntropyLoss(reduction="none") + cur_policy_shift_logits = cur_policy_shift_logits.view(-1, self.config.vocab_size) + cur_policy_shift_labels = cur_policy_shift_labels.view(-1).clone() + # Enable model parallelism + cur_policy_shift_labels[cur_policy_shift_labels == self.tokenizer.pad_token_id] = -100 + cur_policy_shift_labels = cur_policy_shift_labels.to(cur_policy_shift_labels.device) + cur_policy_reward_base_loss = loss_fct( + cur_policy_shift_logits, cur_policy_shift_labels.to(cur_policy_shift_logits.device) + ).reshape(logits.shape[0], -1) + original_dqn_reward = cur_policy_reward_base_loss.detach() - unreduced_loss + + if not did_skip_sampling: + nonzero_indices = prev_probabilities_2d.nonzero() + action_loglikelihoods = F.log_softmax(prev_sample_probs / self.reinforce_temperature, dim=-1)[nonzero_indices[:, 0], nonzero_indices[:, 1]] + action_loglikelihoods_2d = action_loglikelihoods.reshape(batch_size, -1)[:, :-1 - shift_amount] + action_loglikelihoods_list.append(action_loglikelihoods_2d) + if policy_reward is None: + policy_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)] + else: + if self.n_ahead_talk > shift_amount: + added_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)] + else: + added_reward = original_dqn_reward + policy_reward += added_reward + + if self.use_policy_loss and ahead_idx == self.n_ahead + self.n_ahead_talk - 2: + # only compute during the thinking phase + if self.use_reparam_for_thought_embeddings and (self.use_start_thought_token or self.use_end_thought_token): + # sampled_start, sampled_end + # calculate the log likelihood of the start and end embeddings sampled from a multivariate normal distribution + # with mean start_embedding[0] and standard deviation start_embedding[1] + if self.use_start_thought_token: + exp_start_std = torch.exp(start_embedding[1]) + start_loglikelihood = -0.5 * (sampled_start.detach() - start_embedding[0]) ** 2 / exp_start_std ** 2 - start_embedding[1] - 0.5 * math.log(2 * math.pi) + start_loglikelihood = start_loglikelihood.mean(dim=-1) + if self.use_end_thought_token: + exp_end_std = torch.exp(end_embedding[1]) + end_loglikelihood = -0.5 * (sampled_end.detach() - end_embedding[0]) ** 2 / exp_end_std ** 2 - end_embedding[1] - 0.5 * math.log(2 * math.pi) + end_loglikelihood = end_loglikelihood.mean(dim=-1) + # we use the mean instead of the sum to prevent dependence on the dimensionality of the embeddings + if self.use_end_thought_token and self.use_policy_loss_for_end_thought: + action_loglikelihoods_list.append(end_loglikelihood) + if self.use_start_thought_token: + action_loglikelihoods_list.append(start_loglikelihood) + + if ahead_idx == self.n_ahead + self.n_ahead_talk - 2 and self.eval_mode: + with torch.no_grad(): + # calculate the 0.75 quantile of the rewards + filtered_tokens = input_ids[:, :policy_reward.shape[-1]].cpu().detach().numpy().flatten() + filtered_tokens_mask = filtered_tokens != self.tokenizer.pad_token_id + filtered_tokens = filtered_tokens[filtered_tokens_mask] + filtered_rewards = policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten() + filtered_rewards = filtered_rewards[filtered_tokens_mask] + + abs_reward_list = np.abs(policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten()) + abs_reward_list = abs_reward_list[filtered_tokens_mask] + medium_quantile = np.quantile(abs_reward_list, 0.5) + upper_quantile = np.quantile(abs_reward_list, 0.95) + + save_tokens_with_rewards_to_pdf( + filtered_tokens, + [0] + filtered_rewards.tolist(), + self.tokenizer, + output_file=f"texts/rewards_talk_{self.n_ahead_talk}_{self.training_steps}.pdf", + eps=medium_quantile, + eps2=upper_quantile, + ) + + def plot_kde(data, losses): + sns.set(style="whitegrid") + # Create the KDE plot + sns.kdeplot(data, fill=True) + # Set the plot title and labels + plt.title("KDE Plot") + plt.xlabel("Value") + plt.ylabel("Density") + # Save the plot + plt.savefig(f"texts/kde_talk_{self.n_ahead_talk}_{self.training_steps}.pdf") + # Close the plot + plt.close() + + # Step 1: Create a base color palette + base_colors = sns.color_palette("light:#5A9", n_colors=256) # More colors for a smoother gradient + base_cmap = LinearSegmentedColormap.from_list("log_light", base_colors) + log_norm = LogNorm(vmin=1e-3, vmax=10) + + sns.kdeplot(x=data, y=losses, fill=True, levels=20, norm=log_norm, cut=0, linewidths=0) + # limit y to 0 to 25 and x to -1 to 1 + plt.xlim(-1, 1) + plt.ylim(0, 25) + plt.savefig(f"texts/jointer_talk_{self.n_ahead_talk}_{self.training_steps}.pdf") + plt.close() + + self.all_rewards.extend(filtered_rewards) + self.all_unreduced_losses.extend(unreduced_loss[:, :-1].flatten()[filtered_tokens_mask].float().flatten().cpu().detach().numpy()) + plot_kde(self.all_rewards, self.all_unreduced_losses) + + for action_loglikelihoods_2d in action_loglikelihoods_list: + train_policy_reward = policy_reward + + # discard rewards below the mean + if self.trice_mode and self.n_passes > 1: + batched_policy_reward = train_policy_reward.reshape(-1, self.n_passes, train_policy_reward.shape[-1]) + # average over the passes + train_policy_reward = batched_policy_reward - batched_policy_reward.mean(dim=1, keepdim=True) + train_policy_reward = train_policy_reward.reshape(-1, train_policy_reward.shape[-1]) + + if self.subtract_mean_reward: + train_policy_reward = train_policy_reward - train_policy_reward.mean() + if self.remove_negative_rewards: + fixed_policy_reward = train_policy_reward.detach().clamp(min=0) + else: + fixed_policy_reward = train_policy_reward.detach() + actor_loss = -fixed_policy_reward * action_loglikelihoods_2d[:, :policy_reward.shape[-1]].to(policy_reward.device) + if action_loglikelihoods_2d.mean() < -1e4 and not self.use_policy_loss_just_for_thoughts: + # This will only happen when we force the next token to be the end of thought token + break + dqn_loss_list.append(actor_loss.mean()) + + if loss_list: + if self.first_and_last_mode: + loss = sum( + self.loss_mean(loss_list[-(i + 1)]) for i in range(self.n_ahead_talk) + ) * (1 - self.original_loss_weight) / self.n_ahead_talk + loss = loss + self.loss_mean(loss_list[0]) * self.original_loss_weight + # Let's NaN out the others + # e.g. if n_ahead_talk = 2 and the list is 5 long, we want to NaN out 1, 2 but keep 0, 3, 4 + for i in range(1, len(loss_list) - self.n_ahead_talk): + loss_list[i] = loss_list[i] * math.nan + elif self.first_only: + loss = self.loss_mean(loss_list[0]) + elif self.final_only_mode: + loss = sum( + self.loss_mean(loss_list[-i]) for i in range(1, self.n_ahead_talk + 1) + ) / self.n_ahead_talk + else: + loss = None + for i in range(len(loss_list)): + cur_loss = self.loss_mean(loss_list[i]) + if loss is not None: + loss = loss + cur_loss.to(loss.device) + else: + loss = cur_loss + loss = loss / len(loss_list) + + loss = loss * self.base_loss_beta + + if dqn_loss_list: + dqn_loss = sum(dqn_loss_list) / len(dqn_loss_list) + if self.include_policy_loss: + if loss is not None: + loss += dqn_loss * self.policy_loss_beta + else: + loss = dqn_loss * self.policy_loss_beta + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + base_log_dict = { + f"loss_{i}": nonzero_mean(loss_list[i]) for i in range(len(loss_list)) + } + + if loss is not None: + base_log_dict["loss_train"] = loss.item() + + for loss_key, loss_val in base_log_dict.items(): + log_dict[loss_key] += loss_val / self.n_tokens_print + + if self.use_policy_loss and policy_reward is not None: + log_dict["policy_loss"] += dqn_loss / self.n_tokens_print + log_dict["policy_reward"] += policy_reward.mean() / self.n_tokens_print + + if not loss_list: + if loss is not None: + log_dict["loss_0"] += loss / self.n_tokens_print + else: + log_dict["loss_final"] += nonzero_mean(loss_list[-1]) / self.n_tokens_print + log_dict["loss_talk"] += sum(nonzero_mean(cur_loss_item) for cur_loss_item in loss_list[-self.n_ahead_talk:]) / self.n_ahead_talk / self.n_tokens_print + + # also log relative losses to loss_0 + if loss_list: + for i in range(len(loss_list)): + talk_idx = min(max(i - (self.n_ahead - 1), 0), len(talk_loss_list) - 1) + if not talk_loss_list: + cur_talk_loss = nonzero_mean(loss_list[0]) + else: + cur_talk_loss = talk_loss_list[talk_idx] + log_dict[f"rel_loss_{i}"] += (nonzero_mean(loss_list[i]) - cur_talk_loss) / self.n_tokens_print + if self.training: + self.training_steps += 1 + try: + # if self.training_steps % (self.gradient_accumulation_steps * 256) == 0: + if self.wandb_enabled: + if self.training_steps % (self.n_tokens_print) == 0 or not self.training:# and "0" in str(loss.device): + if not self.training: + new_log_dict = {} + for key in list(log_dict.keys()): + new_log_dict["eval_" + key] = log_dict[key] + log_dict = new_log_dict + log_dict["training_steps"] = self.training_steps + log_dict["batch_size"] = batch_size + log_dict["example_steps"] = self.training_steps * batch_size * self.gradient_accumulation_steps + if self.n_ahead > 1: + log_dict["compute_steps"] = self.training_steps * batch_size * (self.n_ahead + self.n_ahead_talk - 1) * self.gradient_accumulation_steps + else: # There's no overhead for talk tokens if there's no thinking + log_dict["compute_steps"] = self.training_steps * batch_size * self.gradient_accumulation_steps + # remove all nans + for key in list(log_dict.keys()): + if log_dict[key] != log_dict[key]: + del log_dict[key] + if self.training: + wandb.log(log_dict) + if self.training: + self.log_dict = defaultdict(int) + else: + self.eval_log_dict = defaultdict(int) + except Exception as e: + pass + + if not self.training: + self.n_ahead_talk = n_ahead_talk_to_restore + self.n_passes = n_passes_to_restore + return CausalLMOutputWithPast( + loss=loss if loss is not None else None, + logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward_quiet( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, QuietForCausalLM + + >>> model = QuietForCausalLM.from_pretrained("quietai/Quiet-7B-v0.1") + >>> tokenizer = AutoTokenizer.from_pretrained("quietai/Quiet-7B-v0.1") + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=True, + ) + hidden_states = outputs.last_hidden_state + logits = self.lm_head(hidden_states) + + thought_ids, thought_embeddings = self._generate_thoughts(hidden_states, max_length=self.config.thought_length) + thought_hidden_states = self.model(inputs_embeds=thought_embeddings).last_hidden_state + + # Compute thought logits + thought_logits = self.lm_head(thought_hidden_states) + + # Mix base and thought logits + mixed_logits = logits.unsqueeze(1) + self.mixing_head(thought_logits) + mixed_logits = mixed_logits.view(-1, mixed_logits.size(-1)) + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = mixed_logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) + + if self.use_policy_loss: + rewards = loss.detach().unsqueeze(1).repeat(1, self.max_thoughts) + if self.remove_negative_rewards: + rewards = torch.clamp(rewards, min=0) + policy_loss = self.calculate_policy_loss(thought_ids, rewards) + loss = loss + policy_loss + else: + loss = None + + if not return_dict: + output = (mixed_logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss if loss is not None else None, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward_legacy( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, MistralForCausalLM + + >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") + >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + cache_position=cache_position, + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + logits = logits.float() + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Ensure tensors are on the same device + shift_labels = shift_labels.to(shift_logits.device) + loss_fct = CrossEntropyLoss() + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def self_extend_forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + padding_mask: Optional[torch.LongTensor] = None, + group_size_1: Optional[float] = 8, + group_size_2: Optional[float] = 2048, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + if self.layer_idx is None: + raise ValueError( + f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " + "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " + "with a layer index." + ) + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + + + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + query_position_ids = position_ids + key_position_ids = torch.arange(kv_seq_len, dtype=position_ids.dtype).to(query_position_ids.device).view(bsz, kv_seq_len) + + + neighbor_query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin, query_position_ids) + _, neighbor_key_states = apply_rotary_pos_emb(None, key_states, cos, sin, key_position_ids) + _re_group_size_2 = 0 if position_ids.max() < group_size_2 else group_size_2 # in case that, the smallest q position, g2-g2//g1 exceed the max position + group_query_states, _ = apply_grouped_rotary_pos_emb(query_states, None, cos, sin, query_position_ids, g_size_1=group_size_1, g_size_2=_re_group_size_2) + _, group_key_states = apply_grouped_rotary_pos_emb(None, key_states, cos, sin, key_position_ids, g_size_1=group_size_1, g_size_2=_re_group_size_2) + + + group_key_states = repeat_kv(group_key_states, self.num_key_value_groups) + neighbor_key_states = repeat_kv(neighbor_key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + neighbor_attn_weights = torch.matmul(neighbor_query_states, neighbor_key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + group_attn_weights = torch.matmul(group_query_states, group_key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + + + if group_attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" + f" {group_attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + group_attn_weights = group_attn_weights + attention_mask + neighbor_attn_weights = neighbor_attn_weights + attention_mask + + + if q_len == 1: + neighbor_attention_mask = torch.zeros((q_len, kv_seq_len), device=neighbor_attn_weights.device) + neighbor_attention_mask[:, -group_size_2:] = 1 + elif q_len == kv_seq_len: + neighbor_attention_mask = torch.ones((q_len, kv_seq_len), device=neighbor_attn_weights.device) + neighbor_attention_mask = torch.tril(neighbor_attention_mask) + if q_len-group_size_2 > 0: + group_attention_mask = torch.tril(torch.ones((q_len-group_size_2, kv_seq_len-group_size_2), device=group_attn_weights.device)) + neighbor_attention_mask[group_size_2:, :-group_size_2] -= group_attention_mask + + else: + raise ValueError("q_len should be 1 or seq_len.") + + + neighbor_attention_mask = neighbor_attention_mask.bool() + attn_weights = torch.where(neighbor_attention_mask, neighbor_attn_weights, group_attn_weights) + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forwardStar( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, MistralForCausalLM + + >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") + >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + log_dict = self.log_dict if self.training else self.eval_log_dict + + if self.training and self.kill_after is not None and self.training_steps // self.gradient_accumulation_steps > self.kill_after: + raise ValueError("Killed after") + + if not self.training: + n_ahead_talk_to_restore = self.n_ahead_talk + n_passes_to_restore = self.n_passes + self.n_ahead_talk = 1 + self.n_passes = 1 + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + assert self.cumulative_residual or self.clever_residual or self.skip_residual or self.no_residual + assert not (self.skip_residual and self.use_policy_loss) + + if self.tokenized_thought_prefix is None and self.use_thought_prefix: + self.tokenized_thought_prefix = self.tokenizer(self.thought_prefix, return_tensors="pt", add_special_tokens=False)["input_ids"] + + def apply_head(head, states, detach=False): + if detach: + head_weight = head.weight.detach() + else: + head_weight = head.weight + head_weight = head_weight.to(states.device) + return (head_weight @ states.transpose(-1, -2)).transpose(-1, -2).contiguous() + + def idx_if_sequential(head, idx=0): + if isinstance(head, nn.Sequential) or isinstance(head, nn.ModuleList): + return idx_if_sequential(head[idx], idx=idx) + return head + + def none_repeat_interleave(x, n): + if x is None: + return x + return x.repeat_interleave(n, dim=0) + + if self.n_passes > 1: + input_ids = none_repeat_interleave(input_ids, self.n_passes) + attention_mask = none_repeat_interleave(attention_mask, self.n_passes) + position_ids = none_repeat_interleave(position_ids, self.n_passes) + inputs_embeds = none_repeat_interleave(inputs_embeds, self.n_passes) + labels = none_repeat_interleave(labels, self.n_passes) + if past_key_values is not None: + past_key_values = [none_repeat_interleave(p, self.n_passes) for p in past_key_values] + cur_token_indices = torch.arange(input_ids.shape[1], device=input_ids.device) + + self.tokenizer_has_start_thought_token = True + self.tokenizer_has_end_thought_token = True + if self.start_token_id is None: + self.start_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>") + if self.start_token_id == 0: + self.start_token_id = self.tokenizer.bos_token_id + self.tokenizer_has_start_thought_token = False + elif self.use_start_thought_token: + # base_start_id = self.tokenizer.convert_tokens_to_ids(self.initial_start_token) + base_start_id = self.tokenizer.encode(self.initial_start_token, add_special_tokens=False)[0] + if self.initialize_thought_embedding_to_normal: + self.start_embedding.data = torch.zeros_like(self.start_embedding.data) + else: + self.start_embedding.data[0] = self.model.embed_tokens.weight.data[base_start_id].clone().detach() / self.embedding_scale + self.start_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale) + if self.end_token_id is None: + self.end_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>") + if self.end_token_id == 0: + self.end_token_id = self.tokenizer.eos_token_id + self.tokenizer_has_end_thought_token = False + elif self.use_end_thought_token: + # base_end_id = self.tokenizer.convert_tokens_to_ids(self.initial_end_token) + base_end_id = self.tokenizer.encode(self.initial_end_token, add_special_tokens=False)[0] + if self.initialize_thought_embedding_to_normal: + self.end_embedding.data = torch.zeros_like(self.end_embedding.data) + else: + self.end_embedding.data[0] = self.model.embed_tokens.weight.data[base_end_id].clone().detach() / self.embedding_scale + self.end_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale) + + if not self.rm_initialized and (self.n_ahead > 1 or not self.base_original_mode): + self.rm_initialized = True + if not self.use_shallow_talk: + head = self.talk_head[0] + cur_head = head[-1] if isinstance(head, nn.Sequential) else head + talk_input_dim = cur_head.weight.data.shape[1] + talk_output_dim = 1 if self.use_weighted_talk_head else self.lm_head.weight.data.shape[0] + cur_head.weight.data = torch.zeros(talk_output_dim, talk_input_dim, device=cur_head.weight.device, dtype=cur_head.weight.dtype) + else: + # convert to identity transform + def lambda_transform(cur_head): + if cur_head.weight.data.shape[0] != cur_head.weight.data.shape[1]: + return torch.cat([ + torch.eye( + cur_head.weight.data.shape[0], + device=cur_head.weight.device, + dtype=cur_head.weight.dtype + ), + torch.zeros( + cur_head.weight.data.shape[0], + cur_head.weight.data.shape[1] - cur_head.weight.data.shape[0], + device=cur_head.weight.device, + dtype=cur_head.weight.dtype + )], dim=1) + return torch.eye( + cur_head.weight.data.shape[0], + device=cur_head.weight.device, + dtype=cur_head.weight.dtype + ) + if isinstance(self.talk_head[0], nn.Sequential): + for cur_head in self.talk_head[0]: + # if it has weights + if hasattr(cur_head, "weight"): + cur_head.weight.data = lambda_transform(cur_head) + else: + self.talk_head[-1].weight.data = lambda_transform(self.talk_head[0]) + + loss = None + prev_rm_tokens = None + cur_rm_tokens = None + prev_rm_logits = None + prev_sample_probs = None + did_skip_sampling = None + skip_sampling = None + sample_probs = None + hidden_states = None + logits = None + talk_kl_penalty = None + rm_logits = None + residual_logits = None + probabilities_2d = None + prev_probabilities_2d = None + policy_reward = None + logits_to_output = None + batch_size, seq_len = input_ids.shape + base_input_ids = input_ids.clone() + loss_list = [] + dqn_loss_list = [] + sampled_token_history = [] + sample_probs_history = [] + action_loglikelihoods_list = [] + + if self.use_end_thought_token or self.use_start_thought_token: + if not self.use_reparam_for_thought_embeddings: + start_embedding = self.start_embedding[0].unsqueeze(0) * self.embedding_scale + end_embedding = self.end_embedding[0].unsqueeze(0) * self.embedding_scale + else: + start_embedding = self.start_embedding * self.embedding_scale + end_embedding = self.end_embedding * self.embedding_scale + base_embeddings = self.model.embed_tokens.weight + if self.train_only_thinking_embedding: + base_embeddings = base_embeddings.detach() + # # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + fwd_iters = 1 if self.original_mode else self.n_ahead + self.n_ahead_talk - 1 + for ahead_idx in range(fwd_iters): + past_key_values_length = 0 + if past_key_values is not None: + use_legacy_cache = not isinstance(past_key_values, Cache) + if use_legacy_cache: + past_key_values = DynamicCache.from_legacy_cache(past_key_values) + past_key_values_length = past_key_values.get_usable_length(seq_len) + + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange( + past_key_values_length, seq_len + past_key_values_length, dtype=torch.long, device=device + ) + position_ids = position_ids.unsqueeze(0).view(-1, seq_len) + else: + position_ids = position_ids.view(-1, seq_len).long() + + if inputs_embeds is None: + contains_start = self.use_start_thought_token and (input_ids == self.start_token_id).any() + contains_end = self.use_end_thought_token and (input_ids == self.end_token_id).any() + contains_thought = contains_start or contains_end + if contains_thought: + thought_id = self.start_token_id if contains_start else self.end_token_id + cur_thought_embedding = start_embedding if contains_start else end_embedding + if self.use_reparam_for_thought_embeddings: + inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype) + inputs_embeds = inputs_embeds.detach() * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0] + if contains_start: + sampled_start = inputs_embeds.clone().detach() + if contains_end: + sampled_end = inputs_embeds.clone().detach() + else: + inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1) + else: + with torch.set_grad_enabled(not self.train_only_thinking_embedding): + inputs_embeds = self.model.embed_tokens(input_ids) + + if self.n_ahead != 1 or self.n_ahead_talk != 1 or self.comparison_mode: + if attention_mask is None: + base_attention_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=0).to(input_ids.device) + base_attention_mask = base_attention_mask.view(1, 1, seq_len, seq_len) + base_attention_mask = base_attention_mask.repeat(input_ids.shape[0], 1, 1, 1) + attention_mask = base_attention_mask + breakpoint() + elif attention_mask.dim() == 2: + if seq_len + past_key_values_length != attention_mask.shape[-1]: + breakpoint() + attention_mask = torch.cat( + [torch.ones((attention_mask.shape[0], past_key_values_length), dtype=attention_mask.dtype, device=attention_mask.device), attention_mask], + dim=-1 + ) + # # if the attention mask + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, + (batch_size, seq_len), + inputs_embeds, + past_key_values_length, + sliding_window=self.config.sliding_window, + ) + + outputs = self.model( + # input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + prev_hidden_states = hidden_states + hidden_states = outputs[0] + prev_rm_logits = rm_logits # for policy gradient + prev_rm_tokens = cur_rm_tokens # for policy gradient + + if ahead_idx == 0: + hidden_states_lm = hidden_states + logits = self.lm_head(hidden_states_lm) + base_hidden_states = hidden_states.clone() + initial_loss_logits = logits.clone() + if self.optimize_lm_head_only_at_start or self.optimize_model_only_at_start: + logits = logits.detach() + base_hidden_states = base_hidden_states.detach() + if self.optimize_model_only_at_start: + hidden_states = hidden_states.detach() + base_logits = logits.clone() + else: + talk_hidden_states = hidden_states + if self.merged_lm_and_talk_heads: + assert self.no_residual + residual_logits = self.lm_head(hidden_states) + talk_hidden_states = hidden_states + else: + if ahead_idx > self.n_ahead - 1: + cur_base_hidden = torch.cat([ + base_hidden_states[..., ahead_idx - self.n_ahead + 1:, :], + base_hidden_states[..., :ahead_idx - self.n_ahead + 1, :] + ], dim=-2) + else: + cur_base_hidden = base_hidden_states + + if self.use_concat_talk_head: + # concatenate the hidden states with the original hidden states + head_input_hidden_states = torch.cat([cur_base_hidden, talk_hidden_states], dim=-1) + else: + head_input_hidden_states = talk_hidden_states + + residual_logits = self.talk_head[0](head_input_hidden_states) + if self.use_shallow_talk: + residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start) + residual_logits = residual_logits.to(logits.device) + if self.use_weighted_talk_head: + # combine the cur_base_hidden with the talk_hidden_states according to the weighted head + residual_logits = cur_base_hidden * (1 - residual_logits) + talk_hidden_states * residual_logits + residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start) + + assert sum([self.cumulative_residual, self.clever_residual, self.skip_residual, self.no_residual]) == 1 + if self.clever_residual: + if ahead_idx >= self.n_ahead - 1: + # get the logits shifted according to the current talk ahead + cur_base_logits = torch.cat([ + base_logits[..., ahead_idx - self.n_ahead + 1:, :], + base_logits[..., :ahead_idx - self.n_ahead + 1, :] + ], dim=-2) + if self.optimize_lm_head_only_at_start: + cur_base_logits = cur_base_logits.detach() + logits = cur_base_logits + residual_logits + else: + logits += residual_logits / self.n_ahead + elif self.cumulative_residual: + if self.residual_talk_head: + if ahead_idx < self.n_ahead: + logits += residual_logits + else: + # get the logits shifted according to the current talk ahead + cur_base_logits = torch.cat([ + base_logits[..., ahead_idx - self.n_ahead + 1:, :], + base_logits[..., :ahead_idx - self.n_ahead + 1, :] + ], dim=-2) + if self.optimize_lm_head_only_at_start: + cur_base_logits = cur_base_logits.detach() + logits = cur_base_logits + residual_logits + else: + if ahead_idx < self.n_ahead: + logits += residual_logits + else: + logits = residual_logits + elif self.skip_residual: + if ahead_idx >= self.n_ahead: + # get the logits shifted according to the current talk ahead + cur_base_logits = torch.cat([ + base_logits[..., ahead_idx - self.n_ahead + 1:, :], + base_logits[..., :ahead_idx - self.n_ahead + 1, :] + ], dim=-2) + if self.optimize_lm_head_only_at_start: + cur_base_logits = cur_base_logits.detach() + logits = cur_base_logits + elif self.no_residual: + logits = residual_logits + else: + logits = base_logits + residual_logits + + attempted = False + talk_loss_list = [] + if self.original_mode or (self.n_ahead == 1) or (self.comparison_mode and ahead_idx == 0):# or (self.optimize_lm_head_only_at_start and ahead_idx == 0): + loss = None + attempted = True + + if labels is not None: + for shift_amount in range(self.n_ahead_talk): + # Shift so that tokens < n predict n + # ab[cde]f + # abc[def] + if ahead_idx == 0 and self.optimize_lm_head_only_at_start: + loss_logits = initial_loss_logits + else: + loss_logits = logits + shift_logits = loss_logits[..., shift_amount:-1, :].contiguous() + shift_labels = labels[..., 1 + shift_amount:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss(reduction="none") + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1).clone() + # Enable model parallelism + shift_labels[shift_labels == self.tokenizer.pad_token_id] = -100 + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + if not self.comparison_mode and not (self.optimize_lm_head_only_at_start and (self.n_ahead + self.n_ahead_talk > 2)) or self.original_mode: + loss_list.append(loss) + talk_loss_list.append(nonzero_mean(loss).detach()) + + if not attempted or self.comparison_mode: + rm_hidden_states = hidden_states + # print("Magnitude of RM hidden states before RM head", rm_hidden_states.norm()) + rm_logits = apply_head(self.lm_head, rm_hidden_states, detach=self.optimize_lm_head_only_at_start) + + # don't allow it to predict the thinking token + if self.tokenizer_has_start_thought_token: + rm_logits[..., self.start_token_id] = -1e10 + if self.tokenizer_has_end_thought_token: + rm_logits[..., self.end_token_id] = -1e10 + probabilities = rm_logits + if probabilities_2d is not None: + prev_probabilities_2d = probabilities_2d.clone() + probabilities_2d = probabilities.view(-1, probabilities.size(-1)) + + did_skip_sampling = skip_sampling + skip_sampling = False + if ahead_idx == 0 and self.use_start_thought_token: + override_token = self.start_token_id + elif self.use_thought_prefix and ahead_idx < self.tokenized_thought_prefix.shape[-1]: + override_token = self.tokenized_thought_prefix[..., ahead_idx] + elif ahead_idx == self.n_ahead - 2 and self.use_end_thought_token: + override_token = self.end_token_id + else: + override_token = None + if override_token is not None and self.n_ahead > 1: + # always start with the start token + probabilities_2d = torch.zeros_like(probabilities_2d) + probabilities_2d[:, override_token] = 1.0 + skip_sampling = True + elif ahead_idx >= self.n_ahead - 1: + if labels is not None: # we're in the talk phase + cur_talk_n = ahead_idx - (self.n_ahead - 1) + 1 + # print("Setting rm to labels", cur_talk_n, "during", ahead_idx) + shift_labels = labels[..., cur_talk_n:].contiguous().to(probabilities_2d.device) + padding = torch.full_like( + labels[..., :cur_talk_n], + self.tokenizer.pad_token_id, + dtype=torch.long, + device=shift_labels.device + ) + new_rm_tokens = torch.cat( + [shift_labels, padding], + dim=-1 + ) + # convert rm tokens to one-hot + probabilities_2d = F.one_hot(new_rm_tokens, num_classes=self.vocab_size).reshape(-1, self.vocab_size).to(probabilities_2d.dtype) + skip_sampling = True + else: + continue + temperature = self.gumbel_temperature if self.training else 0.001 + prev_sample_probs = sample_probs + sample_probs = probabilities_2d + if ahead_idx < self.n_ahead - 1 and not skip_sampling: + probabilities_2d = F.gumbel_softmax(sample_probs, tau=temperature, hard=True, dim=-1) + if self.gumbel_detach: + probabilities_2d = probabilities_2d.detach() + sampled_token_history.append(probabilities_2d.argmax(dim=-1).detach().cpu()) + # convert rm logits directly to embeddings + contains_start = self.use_start_thought_token and (probabilities_2d[..., self.start_token_id].sum() > 0) + contains_end = self.use_end_thought_token and (probabilities_2d[..., self.end_token_id].sum() > 0) + contains_thought = contains_start or contains_end + + if not contains_thought: + with torch.set_grad_enabled(not self.train_only_thinking_embedding): + inputs_embeds = probabilities_2d @ (self.model.embed_tokens.weight.to(probabilities.device).to(probabilities.dtype)) + else: + thought_id = self.start_token_id if contains_start else self.end_token_id + cur_thought_embedding = start_embedding if contains_start else end_embedding + if self.use_reparam_for_thought_embeddings: + inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype) + inputs_embeds = inputs_embeds * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0] + if contains_start: + sampled_start = inputs_embeds.clone().detach() + else: + sampled_end = inputs_embeds.clone().detach() + else: + inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1) + inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype) + inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype) + + if len(attention_mask.shape) == 2: + breakpoint() + else: + original_attention = attention_mask[..., :attention_mask.shape[-2]] + if self.use_upper_triangular: + new_attention = original_attention + else: + original_attention = original_attention == attention_mask.max() + # because eye isn't implemented for BF16, we need to handle the case + if not attention_mask.dtype == torch.bfloat16: + new_attention = torch.eye( + seq_len, dtype=attention_mask.dtype, device=attention_mask.device + ) + else: + new_attention = torch.eye( + seq_len, dtype=torch.float32, device=attention_mask.device + ).to(attention_mask.dtype) + + new_attention = new_attention.view(1, 1, seq_len, seq_len).repeat(input_ids.shape[0], 1, 1, 1) + new_attention = new_attention * original_attention + new_attention[new_attention == 0] = attention_mask.min() + new_attention[new_attention == 1] = attention_mask.max() + attention_mask = torch.cat([attention_mask, new_attention], dim=-1) + past_key_values = outputs.past_key_values + position_ids = position_ids + 1 + + if labels is not None and (self.n_ahead > 1 or not self.base_original_mode): + # Shift so that tokens < n predict n + # logits: abcdef -> bcdef? -> cdef?? + # labels: abcdef -> ?bcdef -> ??cdef + if ahead_idx == 0 and self.optimize_lm_head_only_at_start: + loss_logits = initial_loss_logits + else: + loss_logits = logits + shift_idx = 1 + max(0, ahead_idx - (self.n_ahead - 1)) + shift_logits = loss_logits[..., :-shift_idx, :].contiguous() + shift_labels = labels[..., shift_idx:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss(reduction="none") + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + # if shift_labels.min() == self.tokenizer.pad_token_id: + shift_labels = torch.where(shift_labels == self.tokenizer.pad_token_id, -100, shift_labels) + unreduced_loss = loss_fct(shift_logits, shift_labels) + if torch.any(unreduced_loss != unreduced_loss): + raise ValueError("NaN loss") + unreduced_loss = unreduced_loss.reshape(logits.shape[0], -1) + loss_list.append(unreduced_loss) + + + if self.use_policy_loss and ahead_idx > 0 and (ahead_idx > 1 or not self.use_start_thought_token): + # we treat the change in loss as the reward + previous_loss = loss_list[-2] + # for example, suppose n_ahead = 3 and n_ahead_talk = 2 + # note that we end at self.n_ahead + self.n_ahead_talk - 2 + # in this case, 5 - 2 = 3, so we end at ahead_idx = 3 + # we also predict the next token at ahead_idx = 2 + # when we get to ahead_idx = 2, we predict ahead + # so we shift by 1 + # note that this is ahead_idx = n_ahead - 1 + # when we get to ahead_idx = 3, we predict ahead + # so we shift by 2 + # note that this is ahead_idx = n_ahead + if ahead_idx < self.n_ahead - 1: + shift_amount = 0 + original_dqn_reward = (previous_loss - unreduced_loss).detach() + if self.first_and_last_mode: + original_dqn_reward = original_dqn_reward * 0.0 + else: + # logits vs cur_policy_shift_logits + # let's look at rm_logits and prev_rm_logits + shift_amount = max(0, ahead_idx - (self.n_ahead - 1)) + # let's say shift_amount = 2 + # abcdefg -> bcdefg? -> cdefg?? + # logits = [a b]c d e f[g] + # labels = [a b c]d e f g + cur_policy_shift_logits = initial_loss_logits[..., shift_amount:-1, :].contiguous().detach() + cur_policy_shift_labels = labels[..., 1 + shift_amount:].contiguous() + # Flatten the tokens + cur_policy_loss_fct = CrossEntropyLoss(reduction="none") + cur_policy_shift_logits = cur_policy_shift_logits.view(-1, self.config.vocab_size) + cur_policy_shift_labels = cur_policy_shift_labels.view(-1).clone() + # Enable model parallelism + cur_policy_shift_labels[cur_policy_shift_labels == self.tokenizer.pad_token_id] = -100 + cur_policy_shift_labels = cur_policy_shift_labels.to(cur_policy_shift_labels.device) + cur_policy_reward_base_loss = loss_fct( + cur_policy_shift_logits, cur_policy_shift_labels.to(cur_policy_shift_logits.device) + ).reshape(logits.shape[0], -1) + original_dqn_reward = cur_policy_reward_base_loss.detach() - unreduced_loss + + if not did_skip_sampling: + nonzero_indices = prev_probabilities_2d.nonzero() + action_loglikelihoods = F.log_softmax(prev_sample_probs / self.reinforce_temperature, dim=-1)[nonzero_indices[:, 0], nonzero_indices[:, 1]] + action_loglikelihoods_2d = action_loglikelihoods.reshape(batch_size, -1)[:, :-1 - shift_amount] + action_loglikelihoods_list.append(action_loglikelihoods_2d) + if policy_reward is None: + policy_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)] + else: + if self.n_ahead_talk > shift_amount: + added_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)] + else: + added_reward = original_dqn_reward + policy_reward += added_reward + + if self.use_policy_loss and ahead_idx == self.n_ahead + self.n_ahead_talk - 2: + # only compute during the thinking phase + if self.use_reparam_for_thought_embeddings and (self.use_start_thought_token or self.use_end_thought_token): + # sampled_start, sampled_end + # calculate the log likelihood of the start and end embeddings sampled from a multivariate normal distribution + # with mean start_embedding[0] and standard deviation start_embedding[1] + if self.use_start_thought_token: + exp_start_std = torch.exp(start_embedding[1]) + start_loglikelihood = -0.5 * (sampled_start.detach() - start_embedding[0]) ** 2 / exp_start_std ** 2 - start_embedding[1] - 0.5 * math.log(2 * math.pi) + start_loglikelihood = start_loglikelihood.mean(dim=-1) + if self.use_end_thought_token: + exp_end_std = torch.exp(end_embedding[1]) + end_loglikelihood = -0.5 * (sampled_end.detach() - end_embedding[0]) ** 2 / exp_end_std ** 2 - end_embedding[1] - 0.5 * math.log(2 * math.pi) + end_loglikelihood = end_loglikelihood.mean(dim=-1) + # we use the mean instead of the sum to prevent dependence on the dimensionality of the embeddings + if self.use_end_thought_token and self.use_policy_loss_for_end_thought: + action_loglikelihoods_list.append(end_loglikelihood) + if self.use_start_thought_token: + action_loglikelihoods_list.append(start_loglikelihood) + + if ahead_idx == self.n_ahead + self.n_ahead_talk - 2 and self.eval_mode: + with torch.no_grad(): + # calculate the 0.75 quantile of the rewards + filtered_tokens = input_ids[:, :policy_reward.shape[-1]].cpu().detach().numpy().flatten() + filtered_tokens_mask = filtered_tokens != self.tokenizer.pad_token_id + filtered_tokens = filtered_tokens[filtered_tokens_mask] + filtered_rewards = policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten() + filtered_rewards = filtered_rewards[filtered_tokens_mask] + + abs_reward_list = np.abs(policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten()) + abs_reward_list = abs_reward_list[filtered_tokens_mask] + medium_quantile = np.quantile(abs_reward_list, 0.5) + upper_quantile = np.quantile(abs_reward_list, 0.95) + + for action_loglikelihoods_2d in action_loglikelihoods_list: + train_policy_reward = policy_reward + + # discard rewards below the mean + if self.trice_mode and self.n_passes > 1: + batched_policy_reward = train_policy_reward.reshape(-1, self.n_passes, train_policy_reward.shape[-1]) + # average over the passes + train_policy_reward = batched_policy_reward - batched_policy_reward.mean(dim=1, keepdim=True) + train_policy_reward = train_policy_reward.reshape(-1, train_policy_reward.shape[-1]) + + if self.subtract_mean_reward: + train_policy_reward = train_policy_reward - train_policy_reward.mean() + if self.remove_negative_rewards: + fixed_policy_reward = train_policy_reward.detach().clamp(min=0) + else: + fixed_policy_reward = train_policy_reward.detach() + actor_loss = -fixed_policy_reward * action_loglikelihoods_2d[:, :policy_reward.shape[-1]].to(policy_reward.device) + if action_loglikelihoods_2d.mean() < -1e4 and not self.use_policy_loss_just_for_thoughts: + # This will only happen when we force the next token to be the end of thought token + break + dqn_loss_list.append(actor_loss.mean()) + + if loss_list: + if self.first_and_last_mode: + loss = sum( + self.loss_mean(loss_list[-(i + 1)]) for i in range(self.n_ahead_talk) + ) * (1 - self.original_loss_weight) / self.n_ahead_talk + loss = loss + self.loss_mean(loss_list[0]) * self.original_loss_weight + # Let's NaN out the others + # e.g. if n_ahead_talk = 2 and the list is 5 long, we want to NaN out 1, 2 but keep 0, 3, 4 + for i in range(1, len(loss_list) - self.n_ahead_talk): + loss_list[i] = loss_list[i] * math.nan + elif self.first_only: + loss = self.loss_mean(loss_list[0]) + elif self.final_only_mode: + loss = sum( + self.loss_mean(loss_list[-i]) for i in range(1, self.n_ahead_talk + 1) + ) / self.n_ahead_talk + else: + loss = None + for i in range(len(loss_list)): + cur_loss = self.loss_mean(loss_list[i]) + if loss is not None: + loss = loss + cur_loss.to(loss.device) + else: + loss = cur_loss + loss = loss / len(loss_list) + + loss = loss * self.base_loss_beta + + if dqn_loss_list: + dqn_loss = sum(dqn_loss_list) / len(dqn_loss_list) + if self.include_policy_loss: + if loss is not None: + loss += dqn_loss * self.policy_loss_beta + else: + loss = dqn_loss * self.policy_loss_beta + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + base_log_dict = { + f"loss_{i}": nonzero_mean(loss_list[i]) for i in range(len(loss_list)) + } + + if loss is not None: + base_log_dict["loss_train"] = loss.item() + + for loss_key, loss_val in base_log_dict.items(): + log_dict[loss_key] += loss_val / self.n_tokens_print + + if self.use_policy_loss and policy_reward is not None: + log_dict["policy_loss"] += dqn_loss / self.n_tokens_print + log_dict["policy_reward"] += policy_reward.mean() / self.n_tokens_print + + if not loss_list: + if loss is not None: + log_dict["loss_0"] += loss / self.n_tokens_print + else: + log_dict["loss_final"] += nonzero_mean(loss_list[-1]) / self.n_tokens_print + log_dict["loss_talk"] += sum(nonzero_mean(cur_loss_item) for cur_loss_item in loss_list[-self.n_ahead_talk:]) / self.n_ahead_talk / self.n_tokens_print + + # also log relative losses to loss_0 + if loss_list: + for i in range(len(loss_list)): + talk_idx = min(max(i - (self.n_ahead - 1), 0), len(talk_loss_list) - 1) + if not talk_loss_list: + cur_talk_loss = nonzero_mean(loss_list[0]) + else: + cur_talk_loss = talk_loss_list[talk_idx] + log_dict[f"rel_loss_{i}"] += (nonzero_mean(loss_list[i]) - cur_talk_loss) / self.n_tokens_print + if self.training: + self.training_steps += 1 + + if not self.training: + self.n_ahead_talk = n_ahead_talk_to_restore + self.n_passes = n_passes_to_restore + return CausalLMOutputWithPast( + loss=loss if loss is not None else None, + logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs + ): + # Omit tokens covered by past_key_values + if past_key_values is not None: + if isinstance(past_key_values, Cache): + cache_length = past_key_values.get_seq_length() + past_length = past_key_values.seen_tokens + max_cache_length = past_key_values.get_max_length() + else: + cache_length = past_length = past_key_values[0][0].shape[2] + max_cache_length = None + + # Keep only the unprocessed tokens: + # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where + # some of the inputs are exclusively passed as part of the cache (e.g. when passing inputs_embeds as + # input) + if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: + input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] + # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard + # input_ids based on the past_length. + elif past_length < input_ids.shape[1]: + input_ids = input_ids[:, past_length:] + # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. + + # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. + if ( + max_cache_length is not None + and attention_mask is not None + and cache_length + input_ids.shape[1] > max_cache_length + ): + attention_mask = attention_mask[:, -max_cache_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + +class MistralSelfExtendForCausalLM(MistralPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.model = MistralModel(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + self.max_thoughts = config.max_thoughts + self.merged_lm_and_talk_heads = config.merged_lm_and_talk_heads + self.use_concat_talk_head = config.use_concat_talk_head + self.use_shallow_talk = config.use_shallow_talk + self.use_complex_talk_head = config.use_complex_talk_head + self.use_weighted_talk_head = config.use_weighted_talk_head + # the weighted head will output a single value, so it can't be passed to the lm head + assert not (self.use_weighted_talk_head and self.use_shallow_talk) + + self.n_ahead = 1 + self.n_ahead_talk = 1 + self.n_passes = 1 + self.n_tokens_print = 1 + self.gradient_accumulation_steps = 1 + self.training_steps = 0 + self.tokenizer = None + self.start_token_id = None + self.end_token_id = None + self.rm_initialized = False + self.residual_talk_head = True + self.thought_init_std_scale = 1e-2 + + self.final_only_mode = False + self.first_and_last_mode = True + self.first_only = False + self.original_loss_weight = 0.5 + + self.cumulative_residual = False + self.clever_residual = False + self.skip_residual = False + self.no_residual = True + + self.optimize_lm_head_only_at_start = False + self.optimize_model_only_at_start = False + + if self.optimize_model_only_at_start: + raise NotImplementedError + self.train_only_thinking_embedding = False + self.weighted_embeddings = False + self.use_start_thought_token = True + self.use_end_thought_token = True + self.initialize_thought_embedding_to_normal = False + self.initial_start_token = "---" + self.initial_end_token = "---" + self.output_logits_at_the_end = True + + self.gumbel_temperature = 0.001 + + self.use_policy_loss = True + self.include_policy_loss = True + self.trice_mode = True + self.remove_negative_rewards = True + self.use_policy_loss_for_end_thought = True + + self.base_original_mode = False + self.original_mode = False + + self.thought_prefix = "(Let's think step by step" + self.tokenized_thought_prefix = None + self.log_dict = defaultdict(int) + self.eval_log_dict = defaultdict(int) + self.print_final_only = True + self.loss_mean = loss_mean + self.all_rewards = [] + self.all_unreduced_losses = [] + self.kill_after = 100 + + self.start_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size)) + self.end_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size)) + + self.policy_loss_beta = 1e6 + self.embedding_scale = 1e2 + self.reinforce_temperature = 3 + self.base_loss_beta = 1 + + # Not used in the paper: + self.use_thought_prefix = False + self.use_reparam_for_thought_embeddings = False + self.use_upper_triangular = False + self.subtract_mean_reward = False + self.comparison_mode = False + self.gumbel_detach = True + + # For visualization + self.eval_mode = False + + num_talk = 1 + talk_input_dim = config.hidden_size if not self.use_concat_talk_head else config.hidden_size * 2 + if self.use_weighted_talk_head: + talk_output_dim = 1 + else: + talk_output_dim = config.hidden_size if self.use_shallow_talk else config.vocab_size + + if not self.merged_lm_and_talk_heads: + if self.use_complex_talk_head: + self.talk_head = nn.ModuleList([nn.Sequential( + nn.Linear(talk_input_dim, config.hidden_size), + nn.ReLU(), + nn.Linear(config.hidden_size, config.hidden_size), + nn.ReLU(), + nn.Linear(config.hidden_size, talk_output_dim, bias=False) + )]) + else: + self.talk_head = nn.ModuleList([nn.Sequential( + nn.Linear(talk_input_dim, talk_output_dim, bias=False) + )]) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + def calculate_policy_loss(self, thoughts, rewards): + thought_log_probs = [] + for thought in thoughts: + thought_log_prob = self.lm_head(thought).log_softmax(dim=-1) + thought_log_probs.append(thought_log_prob) + + thought_log_probs = torch.stack(thought_log_probs, dim=1) # (batch_size, num_thoughts, seq_length, vocab_size) + thought_probs = torch.exp(thought_log_probs) + + policy_loss = -torch.mean(thought_log_probs * rewards.unsqueeze(-1).unsqueeze(-1)) + + return policy_loss + + def _generate_thoughts(self, hidden_states, max_length): + batch_size = hidden_states.size(0) + thought_ids = torch.zeros((batch_size, self.config.max_thoughts, max_length), dtype=torch.long, device=hidden_states.device) + thought_embeddings = [] + + for i in range(self.config.max_thoughts): + thought_input_ids = torch.zeros((batch_size, 1), dtype=torch.long, device=hidden_states.device) + thought_outputs = self.generate( + input_ids=thought_input_ids, + max_length=max_length, + do_sample=True, + top_k=50, + top_p=0.95, + pad_token_id=self.config.pad_token_id, + eos_token_id=self.config.eos_token_id, + ) + thought_ids[:, i, :] = thought_outputs + thought_embeddings.append(self.get_input_embeddings()(thought_outputs)) + + thought_embeddings = torch.stack(thought_embeddings, dim=1) + return thought_ids, thought_embeddings + + @torch.no_grad() + def infer( + self, + input_ids: torch.LongTensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + batch_size, seq_len = input_ids.shape + + # Save the original input_ids and attention_mask for later use + original_input_ids = input_ids.clone() + original_attention_mask = attention_mask.clone() if attention_mask is not None else None + + # Append the start thought token to the input sequence + start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>") + input_ids = torch.cat([input_ids, torch.tensor([[start_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1) + seq_len += 1 + + # Update the attention mask + if attention_mask is not None: + attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) + + # Generate the continuation + continuation_length = self.n_ahead - 2 + new_key_values = past_key_values + + start_time = time.time() + for continuation_idx in range(continuation_length): + outputs = self.model( + input_ids=input_ids if continuation_idx == 0 else next_token_id.unsqueeze(-1).to(input_ids.device), + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=new_key_values, + inputs_embeds=inputs_embeds, + use_cache=True, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + new_key_values = outputs.past_key_values + + hidden_states = outputs[0] + + logits = self.lm_head(hidden_states) + logits = logits[:, -1, :] # Only consider the last token + + # Apply Gumbel-Softmax to the logits + next_token_logits = F.gumbel_softmax(logits, tau=self.gumbel_temperature, hard=True, dim=-1) + next_token_id = torch.argmax(next_token_logits, dim=-1) + + # Append the generated token to the input sequence + input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1).to(input_ids.device)], dim=-1) + seq_len += 1 + + # Update the attention mask + if attention_mask is not None: + attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) + + # Append the end thought token to the input sequence + end_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>") + input_ids = torch.cat([input_ids, torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1) + seq_len += 1 + + # Update the attention mask + if attention_mask is not None: + attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) + + # Get the hidden states before and after the thought + outputs_before = self.model( + input_ids=original_input_ids, + attention_mask=original_attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states_before = outputs_before[0][:, -1:, :] + + # two new tokens: last continuation token and end thought token + outputs_after = self.model( + input_ids=torch.cat([next_token_id.unsqueeze(-1).to(input_ids.device), torch.tensor(end_thought_token_id).unsqueeze(-1).unsqueeze(-1).to(input_ids.device)], dim=-1), + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=new_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states_after = outputs_after[0][:, -1:, :] + + # Apply the talk head to get the mixing weight + mixing_weight = self.talk_head[0](torch.cat([hidden_states_before, hidden_states_after], dim=-1)) + + # Apply the mixing weight to the hidden states + mixed_hidden_states = (1 - mixing_weight) * hidden_states_before + mixing_weight * hidden_states_after + + # Apply the language model head to get the final logits + logits = self.lm_head(mixed_hidden_states) + return logits + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + padding_mask: Optional[torch.LongTensor] = None, + group_size_1: Optional[float] = 8, + group_size_2: Optional[float] = 2048, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + if self.layer_idx is None: + raise ValueError( + f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " + "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " + "with a layer index." + ) + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + + + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + query_position_ids = position_ids + key_position_ids = torch.arange(kv_seq_len, dtype=position_ids.dtype).to(query_position_ids.device).view(bsz, kv_seq_len) + + + neighbor_query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin, query_position_ids) + _, neighbor_key_states = apply_rotary_pos_emb(None, key_states, cos, sin, key_position_ids) + _re_group_size_2 = 0 if position_ids.max() < group_size_2 else group_size_2 # in case that, the smallest q position, g2-g2//g1 exceed the max position + group_query_states, _ = apply_grouped_rotary_pos_emb(query_states, None, cos, sin, query_position_ids, g_size_1=group_size_1, g_size_2=_re_group_size_2) + _, group_key_states = apply_grouped_rotary_pos_emb(None, key_states, cos, sin, key_position_ids, g_size_1=group_size_1, g_size_2=_re_group_size_2) + + + group_key_states = repeat_kv(group_key_states, self.num_key_value_groups) + neighbor_key_states = repeat_kv(neighbor_key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + neighbor_attn_weights = torch.matmul(neighbor_query_states, neighbor_key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + group_attn_weights = torch.matmul(group_query_states, group_key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + + + if group_attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" + f" {group_attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + group_attn_weights = group_attn_weights + attention_mask + neighbor_attn_weights = neighbor_attn_weights + attention_mask + + + if q_len == 1: + neighbor_attention_mask = torch.zeros((q_len, kv_seq_len), device=neighbor_attn_weights.device) + neighbor_attention_mask[:, -group_size_2:] = 1 + elif q_len == kv_seq_len: + neighbor_attention_mask = torch.ones((q_len, kv_seq_len), device=neighbor_attn_weights.device) + neighbor_attention_mask = torch.tril(neighbor_attention_mask) + if q_len-group_size_2 > 0: + group_attention_mask = torch.tril(torch.ones((q_len-group_size_2, kv_seq_len-group_size_2), device=group_attn_weights.device)) + neighbor_attention_mask[group_size_2:, :-group_size_2] -= group_attention_mask + + else: + raise ValueError("q_len should be 1 or seq_len.") + + + neighbor_attention_mask = neighbor_attention_mask.bool() + attn_weights = torch.where(neighbor_attention_mask, neighbor_attn_weights, group_attn_weights) + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs + ): + # Omit tokens covered by past_key_values + if past_key_values is not None: + if isinstance(past_key_values, Cache): + cache_length = past_key_values.get_seq_length() + past_length = past_key_values.seen_tokens + max_cache_length = past_key_values.get_max_length() + else: + cache_length = past_length = past_key_values[0][0].shape[2] + max_cache_length = None + + # Keep only the unprocessed tokens: + # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where + # some of the inputs are exclusively passed as part of the cache (e.g. when passing inputs_embeds as + # input) + if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: + input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] + # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard + # input_ids based on the past_length. + elif past_length < input_ids.shape[1]: + input_ids = input_ids[:, past_length:] + # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. + + # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. + if ( + max_cache_length is not None + and attention_mask is not None + and cache_length + input_ids.shape[1] > max_cache_length + ): + attention_mask = attention_mask[:, -max_cache_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + +class MistralStarForCausalLM(MistralPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.model = MistralModel(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + self.max_thoughts = config.max_thoughts + self.merged_lm_and_talk_heads = config.merged_lm_and_talk_heads + self.use_concat_talk_head = config.use_concat_talk_head + self.use_shallow_talk = config.use_shallow_talk + self.use_complex_talk_head = config.use_complex_talk_head + self.use_weighted_talk_head = config.use_weighted_talk_head + # the weighted head will output a single value, so it can't be passed to the lm head + assert not (self.use_weighted_talk_head and self.use_shallow_talk) + + self.n_ahead = 1 + self.n_ahead_talk = 1 + self.n_passes = 1 + self.n_tokens_print = 1 + self.gradient_accumulation_steps = 1 + self.training_steps = 0 + self.tokenizer = None + self.start_token_id = None + self.end_token_id = None + self.rm_initialized = False + self.residual_talk_head = True + self.thought_init_std_scale = 1e-2 + + self.final_only_mode = False + self.first_and_last_mode = True + self.first_only = False + self.original_loss_weight = 0.5 + + self.cumulative_residual = False + self.clever_residual = False + self.skip_residual = False + self.no_residual = True + + self.optimize_lm_head_only_at_start = False + self.optimize_model_only_at_start = False + + if self.optimize_model_only_at_start: + raise NotImplementedError + self.train_only_thinking_embedding = False + self.weighted_embeddings = False + self.use_start_thought_token = True + self.use_end_thought_token = True + self.initialize_thought_embedding_to_normal = False + self.initial_start_token = "---" + self.initial_end_token = "---" + self.output_logits_at_the_end = True + + self.gumbel_temperature = 0.001 + + self.use_policy_loss = True + self.include_policy_loss = True + self.trice_mode = True + self.remove_negative_rewards = True + self.use_policy_loss_for_end_thought = True + + self.base_original_mode = False + self.original_mode = False + + self.thought_prefix = "(Let's think step by step" + self.tokenized_thought_prefix = None + self.log_dict = defaultdict(int) + self.eval_log_dict = defaultdict(int) + self.print_final_only = True + self.loss_mean = loss_mean + self.all_rewards = [] + self.all_unreduced_losses = [] + self.kill_after = 100 + + self.start_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size)) + self.end_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size)) + + self.policy_loss_beta = 1e6 + self.embedding_scale = 1e2 + self.reinforce_temperature = 3 + self.base_loss_beta = 1 + + # Not used in the paper: + self.use_thought_prefix = False + self.use_reparam_for_thought_embeddings = False + self.use_upper_triangular = False + self.subtract_mean_reward = False + self.comparison_mode = False + self.gumbel_detach = True + + # For visualization + self.eval_mode = False + + num_talk = 1 + talk_input_dim = config.hidden_size if not self.use_concat_talk_head else config.hidden_size * 2 + if self.use_weighted_talk_head: + talk_output_dim = 1 + else: + talk_output_dim = config.hidden_size if self.use_shallow_talk else config.vocab_size + + if not self.merged_lm_and_talk_heads: + if self.use_complex_talk_head: + self.talk_head = nn.ModuleList([nn.Sequential( + nn.Linear(talk_input_dim, config.hidden_size), + nn.ReLU(), + nn.Linear(config.hidden_size, config.hidden_size), + nn.ReLU(), + nn.Linear(config.hidden_size, talk_output_dim, bias=False) + )]) + else: + self.talk_head = nn.ModuleList([nn.Sequential( + nn.Linear(talk_input_dim, talk_output_dim, bias=False) + )]) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + def calculate_policy_loss(self, thoughts, rewards): + thought_log_probs = [] + for thought in thoughts: + thought_log_prob = self.lm_head(thought).log_softmax(dim=-1) + thought_log_probs.append(thought_log_prob) + + thought_log_probs = torch.stack(thought_log_probs, dim=1) # (batch_size, num_thoughts, seq_length, vocab_size) + thought_probs = torch.exp(thought_log_probs) + + policy_loss = -torch.mean(thought_log_probs * rewards.unsqueeze(-1).unsqueeze(-1)) + + return policy_loss + + def _generate_thoughts(self, hidden_states, max_length): + batch_size = hidden_states.size(0) + thought_ids = torch.zeros((batch_size, self.config.max_thoughts, max_length), dtype=torch.long, device=hidden_states.device) + thought_embeddings = [] + + for i in range(self.config.max_thoughts): + thought_input_ids = torch.zeros((batch_size, 1), dtype=torch.long, device=hidden_states.device) + thought_outputs = self.generate( + input_ids=thought_input_ids, + max_length=max_length, + do_sample=True, + top_k=50, + top_p=0.95, + pad_token_id=self.config.pad_token_id, + eos_token_id=self.config.eos_token_id, + ) + thought_ids[:, i, :] = thought_outputs + thought_embeddings.append(self.get_input_embeddings()(thought_outputs)) + + thought_embeddings = torch.stack(thought_embeddings, dim=1) + return thought_ids, thought_embeddings + + @torch.no_grad() + def infer( + self, + input_ids: torch.LongTensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + batch_size, seq_len = input_ids.shape + + # Save the original input_ids and attention_mask for later use + original_input_ids = input_ids.clone() + original_attention_mask = attention_mask.clone() if attention_mask is not None else None + + # Append the start thought token to the input sequence + start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>") + input_ids = torch.cat([input_ids, torch.tensor([[start_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1) + seq_len += 1 + + # Update the attention mask + if attention_mask is not None: + attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) + + # Generate the continuation + continuation_length = self.n_ahead - 2 + new_key_values = past_key_values + + start_time = time.time() + for continuation_idx in range(continuation_length): + outputs = self.model( + input_ids=input_ids if continuation_idx == 0 else next_token_id.unsqueeze(-1).to(input_ids.device), + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=new_key_values, + inputs_embeds=inputs_embeds, + use_cache=True, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + new_key_values = outputs.past_key_values + + hidden_states = outputs[0] + + logits = self.lm_head(hidden_states) + logits = logits[:, -1, :] # Only consider the last token + + # Apply Gumbel-Softmax to the logits + next_token_logits = F.gumbel_softmax(logits, tau=self.gumbel_temperature, hard=True, dim=-1) + next_token_id = torch.argmax(next_token_logits, dim=-1) + + # Append the generated token to the input sequence + input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1).to(input_ids.device)], dim=-1) + seq_len += 1 + + # Update the attention mask + if attention_mask is not None: + attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) + + # Append the end thought token to the input sequence + end_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>") + input_ids = torch.cat([input_ids, torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1) + seq_len += 1 + + # Update the attention mask + if attention_mask is not None: + attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) + + # Get the hidden states before and after the thought + outputs_before = self.model( + input_ids=original_input_ids, + attention_mask=original_attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states_before = outputs_before[0][:, -1:, :] + + # two new tokens: last continuation token and end thought token + outputs_after = self.model( + input_ids=torch.cat([next_token_id.unsqueeze(-1).to(input_ids.device), torch.tensor(end_thought_token_id).unsqueeze(-1).unsqueeze(-1).to(input_ids.device)], dim=-1), + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=new_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states_after = outputs_after[0][:, -1:, :] + + # Apply the talk head to get the mixing weight + mixing_weight = self.talk_head[0](torch.cat([hidden_states_before, hidden_states_after], dim=-1)) + + # Apply the mixing weight to the hidden states + mixed_hidden_states = (1 - mixing_weight) * hidden_states_before + mixing_weight * hidden_states_after + + # Apply the language model head to get the final logits + logits = self.lm_head(mixed_hidden_states) + return logits + + @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward_quiet( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, QuietForCausalLM + + >>> model = QuietForCausalLM.from_pretrained("quietai/Quiet-7B-v0.1") + >>> tokenizer = AutoTokenizer.from_pretrained("quietai/Quiet-7B-v0.1") + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=True, + ) + hidden_states = outputs.last_hidden_state + logits = self.lm_head(hidden_states) + + thought_ids, thought_embeddings = self._generate_thoughts(hidden_states, max_length=self.config.thought_length) + thought_hidden_states = self.model(inputs_embeds=thought_embeddings).last_hidden_state + + # Compute thought logits + thought_logits = self.lm_head(thought_hidden_states) + + # Mix base and thought logits + mixed_logits = logits.unsqueeze(1) + self.mixing_head(thought_logits) + mixed_logits = mixed_logits.view(-1, mixed_logits.size(-1)) + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = mixed_logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) + + if self.use_policy_loss: + rewards = loss.detach().unsqueeze(1).repeat(1, self.max_thoughts) + if self.remove_negative_rewards: + rewards = torch.clamp(rewards, min=0) + policy_loss = self.calculate_policy_loss(thought_ids, rewards) + loss = loss + policy_loss + else: + loss = None + + if not return_dict: + output = (mixed_logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss if loss is not None else None, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, MistralForCausalLM + + >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") + >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + log_dict = self.log_dict if self.training else self.eval_log_dict + + if self.training and self.kill_after is not None and self.training_steps // self.gradient_accumulation_steps > self.kill_after: + raise ValueError("Killed after") + + if not self.training: + n_ahead_talk_to_restore = self.n_ahead_talk + n_passes_to_restore = self.n_passes + self.n_ahead_talk = 1 + self.n_passes = 1 + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + assert self.cumulative_residual or self.clever_residual or self.skip_residual or self.no_residual + assert not (self.skip_residual and self.use_policy_loss) + + if self.tokenized_thought_prefix is None and self.use_thought_prefix: + self.tokenized_thought_prefix = self.tokenizer(self.thought_prefix, return_tensors="pt", add_special_tokens=False)["input_ids"] + + def apply_head(head, states, detach=False): + if detach: + head_weight = head.weight.detach() + else: + head_weight = head.weight + head_weight = head_weight.to(states.device) + return (head_weight @ states.transpose(-1, -2)).transpose(-1, -2).contiguous() + + def idx_if_sequential(head, idx=0): + if isinstance(head, nn.Sequential) or isinstance(head, nn.ModuleList): + return idx_if_sequential(head[idx], idx=idx) + return head + + def none_repeat_interleave(x, n): + if x is None: + return x + return x.repeat_interleave(n, dim=0) + + if self.n_passes > 1: + input_ids = none_repeat_interleave(input_ids, self.n_passes) + attention_mask = none_repeat_interleave(attention_mask, self.n_passes) + position_ids = none_repeat_interleave(position_ids, self.n_passes) + inputs_embeds = none_repeat_interleave(inputs_embeds, self.n_passes) + labels = none_repeat_interleave(labels, self.n_passes) + if past_key_values is not None: + past_key_values = [none_repeat_interleave(p, self.n_passes) for p in past_key_values] + cur_token_indices = torch.arange(input_ids.shape[1], device=input_ids.device) + + self.tokenizer_has_start_thought_token = True + self.tokenizer_has_end_thought_token = True + if self.start_token_id is None: + self.start_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>") + if self.start_token_id == 0: + self.start_token_id = self.tokenizer.bos_token_id + self.tokenizer_has_start_thought_token = False + elif self.use_start_thought_token: + # base_start_id = self.tokenizer.convert_tokens_to_ids(self.initial_start_token) + base_start_id = self.tokenizer.encode(self.initial_start_token, add_special_tokens=False)[0] + if self.initialize_thought_embedding_to_normal: + self.start_embedding.data = torch.zeros_like(self.start_embedding.data) + else: + self.start_embedding.data[0] = self.model.embed_tokens.weight.data[base_start_id].clone().detach() / self.embedding_scale + self.start_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale) + if self.end_token_id is None: + self.end_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>") + if self.end_token_id == 0: + self.end_token_id = self.tokenizer.eos_token_id + self.tokenizer_has_end_thought_token = False + elif self.use_end_thought_token: + # base_end_id = self.tokenizer.convert_tokens_to_ids(self.initial_end_token) + base_end_id = self.tokenizer.encode(self.initial_end_token, add_special_tokens=False)[0] + if self.initialize_thought_embedding_to_normal: + self.end_embedding.data = torch.zeros_like(self.end_embedding.data) + else: + self.end_embedding.data[0] = self.model.embed_tokens.weight.data[base_end_id].clone().detach() / self.embedding_scale + self.end_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale) + + if not self.rm_initialized and (self.n_ahead > 1 or not self.base_original_mode): + self.rm_initialized = True + if not self.use_shallow_talk: + head = self.talk_head[0] + cur_head = head[-1] if isinstance(head, nn.Sequential) else head + talk_input_dim = cur_head.weight.data.shape[1] + talk_output_dim = 1 if self.use_weighted_talk_head else self.lm_head.weight.data.shape[0] + cur_head.weight.data = torch.zeros(talk_output_dim, talk_input_dim, device=cur_head.weight.device, dtype=cur_head.weight.dtype) + else: + # convert to identity transform + def lambda_transform(cur_head): + if cur_head.weight.data.shape[0] != cur_head.weight.data.shape[1]: + return torch.cat([ + torch.eye( + cur_head.weight.data.shape[0], + device=cur_head.weight.device, + dtype=cur_head.weight.dtype + ), + torch.zeros( + cur_head.weight.data.shape[0], + cur_head.weight.data.shape[1] - cur_head.weight.data.shape[0], + device=cur_head.weight.device, + dtype=cur_head.weight.dtype + )], dim=1) + return torch.eye( + cur_head.weight.data.shape[0], + device=cur_head.weight.device, + dtype=cur_head.weight.dtype + ) + if isinstance(self.talk_head[0], nn.Sequential): + for cur_head in self.talk_head[0]: + # if it has weights + if hasattr(cur_head, "weight"): + cur_head.weight.data = lambda_transform(cur_head) + else: + self.talk_head[-1].weight.data = lambda_transform(self.talk_head[0]) + + loss = None + prev_rm_tokens = None + cur_rm_tokens = None + prev_rm_logits = None + prev_sample_probs = None + did_skip_sampling = None + skip_sampling = None + sample_probs = None + hidden_states = None + logits = None + talk_kl_penalty = None + rm_logits = None + residual_logits = None + probabilities_2d = None + prev_probabilities_2d = None + policy_reward = None + logits_to_output = None + batch_size, seq_len = input_ids.shape + base_input_ids = input_ids.clone() + loss_list = [] + dqn_loss_list = [] + sampled_token_history = [] + sample_probs_history = [] + action_loglikelihoods_list = [] + + if self.use_end_thought_token or self.use_start_thought_token: + if not self.use_reparam_for_thought_embeddings: + start_embedding = self.start_embedding[0].unsqueeze(0) * self.embedding_scale + end_embedding = self.end_embedding[0].unsqueeze(0) * self.embedding_scale + else: + start_embedding = self.start_embedding * self.embedding_scale + end_embedding = self.end_embedding * self.embedding_scale + base_embeddings = self.model.embed_tokens.weight + if self.train_only_thinking_embedding: + base_embeddings = base_embeddings.detach() + # # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + fwd_iters = 1 if self.original_mode else self.n_ahead + self.n_ahead_talk - 1 + for ahead_idx in range(fwd_iters): + past_key_values_length = 0 + if past_key_values is not None: + use_legacy_cache = not isinstance(past_key_values, Cache) + if use_legacy_cache: + past_key_values = DynamicCache.from_legacy_cache(past_key_values) + past_key_values_length = past_key_values.get_usable_length(seq_len) + + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange( + past_key_values_length, seq_len + past_key_values_length, dtype=torch.long, device=device + ) + position_ids = position_ids.unsqueeze(0).view(-1, seq_len) + else: + position_ids = position_ids.view(-1, seq_len).long() + + if inputs_embeds is None: + contains_start = self.use_start_thought_token and (input_ids == self.start_token_id).any() + contains_end = self.use_end_thought_token and (input_ids == self.end_token_id).any() + contains_thought = contains_start or contains_end + if contains_thought: + thought_id = self.start_token_id if contains_start else self.end_token_id + cur_thought_embedding = start_embedding if contains_start else end_embedding + if self.use_reparam_for_thought_embeddings: + inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype) + inputs_embeds = inputs_embeds.detach() * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0] + if contains_start: + sampled_start = inputs_embeds.clone().detach() + if contains_end: + sampled_end = inputs_embeds.clone().detach() + else: + inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1) + else: + with torch.set_grad_enabled(not self.train_only_thinking_embedding): + inputs_embeds = self.model.embed_tokens(input_ids) + + if self.n_ahead != 1 or self.n_ahead_talk != 1 or self.comparison_mode: + if attention_mask is None: + base_attention_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=0).to(input_ids.device) + base_attention_mask = base_attention_mask.view(1, 1, seq_len, seq_len) + base_attention_mask = base_attention_mask.repeat(input_ids.shape[0], 1, 1, 1) + attention_mask = base_attention_mask + breakpoint() + elif attention_mask.dim() == 2: + if seq_len + past_key_values_length != attention_mask.shape[-1]: + breakpoint() + attention_mask = torch.cat( + [torch.ones((attention_mask.shape[0], past_key_values_length), dtype=attention_mask.dtype, device=attention_mask.device), attention_mask], + dim=-1 + ) + # # if the attention mask + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, + (batch_size, seq_len), + inputs_embeds, + past_key_values_length, + sliding_window=self.config.sliding_window, + ) + + outputs = self.model( + # input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + prev_hidden_states = hidden_states + hidden_states = outputs[0] + prev_rm_logits = rm_logits # for policy gradient + prev_rm_tokens = cur_rm_tokens # for policy gradient + + if ahead_idx == 0: + hidden_states_lm = hidden_states + logits = self.lm_head(hidden_states_lm) + base_hidden_states = hidden_states.clone() + initial_loss_logits = logits.clone() + if self.optimize_lm_head_only_at_start or self.optimize_model_only_at_start: + logits = logits.detach() + base_hidden_states = base_hidden_states.detach() + if self.optimize_model_only_at_start: + hidden_states = hidden_states.detach() + base_logits = logits.clone() + else: + talk_hidden_states = hidden_states + if self.merged_lm_and_talk_heads: + assert self.no_residual + residual_logits = self.lm_head(hidden_states) + talk_hidden_states = hidden_states + else: + if ahead_idx > self.n_ahead - 1: + cur_base_hidden = torch.cat([ + base_hidden_states[..., ahead_idx - self.n_ahead + 1:, :], + base_hidden_states[..., :ahead_idx - self.n_ahead + 1, :] + ], dim=-2) + else: + cur_base_hidden = base_hidden_states + + if self.use_concat_talk_head: + # concatenate the hidden states with the original hidden states + head_input_hidden_states = torch.cat([cur_base_hidden, talk_hidden_states], dim=-1) + else: + head_input_hidden_states = talk_hidden_states + + residual_logits = self.talk_head[0](head_input_hidden_states) + if self.use_shallow_talk: + residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start) + residual_logits = residual_logits.to(logits.device) + if self.use_weighted_talk_head: + # combine the cur_base_hidden with the talk_hidden_states according to the weighted head + residual_logits = cur_base_hidden * (1 - residual_logits) + talk_hidden_states * residual_logits + residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start) + + assert sum([self.cumulative_residual, self.clever_residual, self.skip_residual, self.no_residual]) == 1 + if self.clever_residual: + if ahead_idx >= self.n_ahead - 1: + # get the logits shifted according to the current talk ahead + cur_base_logits = torch.cat([ + base_logits[..., ahead_idx - self.n_ahead + 1:, :], + base_logits[..., :ahead_idx - self.n_ahead + 1, :] + ], dim=-2) + if self.optimize_lm_head_only_at_start: + cur_base_logits = cur_base_logits.detach() + logits = cur_base_logits + residual_logits + else: + logits += residual_logits / self.n_ahead + elif self.cumulative_residual: + if self.residual_talk_head: + if ahead_idx < self.n_ahead: + logits += residual_logits + else: + # get the logits shifted according to the current talk ahead + cur_base_logits = torch.cat([ + base_logits[..., ahead_idx - self.n_ahead + 1:, :], + base_logits[..., :ahead_idx - self.n_ahead + 1, :] + ], dim=-2) + if self.optimize_lm_head_only_at_start: + cur_base_logits = cur_base_logits.detach() + logits = cur_base_logits + residual_logits + else: + if ahead_idx < self.n_ahead: + logits += residual_logits + else: + logits = residual_logits + elif self.skip_residual: + if ahead_idx >= self.n_ahead: + # get the logits shifted according to the current talk ahead + cur_base_logits = torch.cat([ + base_logits[..., ahead_idx - self.n_ahead + 1:, :], + base_logits[..., :ahead_idx - self.n_ahead + 1, :] + ], dim=-2) + if self.optimize_lm_head_only_at_start: + cur_base_logits = cur_base_logits.detach() + logits = cur_base_logits + elif self.no_residual: + logits = residual_logits + else: + logits = base_logits + residual_logits + + attempted = False + talk_loss_list = [] + if self.original_mode or (self.n_ahead == 1) or (self.comparison_mode and ahead_idx == 0):# or (self.optimize_lm_head_only_at_start and ahead_idx == 0): + loss = None + attempted = True + + if labels is not None: + for shift_amount in range(self.n_ahead_talk): + # Shift so that tokens < n predict n + # ab[cde]f + # abc[def] + if ahead_idx == 0 and self.optimize_lm_head_only_at_start: + loss_logits = initial_loss_logits + else: + loss_logits = logits + shift_logits = loss_logits[..., shift_amount:-1, :].contiguous() + shift_labels = labels[..., 1 + shift_amount:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss(reduction="none") + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1).clone() + # Enable model parallelism + shift_labels[shift_labels == self.tokenizer.pad_token_id] = -100 + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + if not self.comparison_mode and not (self.optimize_lm_head_only_at_start and (self.n_ahead + self.n_ahead_talk > 2)) or self.original_mode: + loss_list.append(loss) + talk_loss_list.append(nonzero_mean(loss).detach()) + + if not attempted or self.comparison_mode: + rm_hidden_states = hidden_states + # print("Magnitude of RM hidden states before RM head", rm_hidden_states.norm()) + rm_logits = apply_head(self.lm_head, rm_hidden_states, detach=self.optimize_lm_head_only_at_start) + + # don't allow it to predict the thinking token + if self.tokenizer_has_start_thought_token: + rm_logits[..., self.start_token_id] = -1e10 + if self.tokenizer_has_end_thought_token: + rm_logits[..., self.end_token_id] = -1e10 + probabilities = rm_logits + if probabilities_2d is not None: + prev_probabilities_2d = probabilities_2d.clone() + probabilities_2d = probabilities.view(-1, probabilities.size(-1)) + + did_skip_sampling = skip_sampling + skip_sampling = False + if ahead_idx == 0 and self.use_start_thought_token: + override_token = self.start_token_id + elif self.use_thought_prefix and ahead_idx < self.tokenized_thought_prefix.shape[-1]: + override_token = self.tokenized_thought_prefix[..., ahead_idx] + elif ahead_idx == self.n_ahead - 2 and self.use_end_thought_token: + override_token = self.end_token_id + else: + override_token = None + if override_token is not None and self.n_ahead > 1: + # always start with the start token + probabilities_2d = torch.zeros_like(probabilities_2d) + probabilities_2d[:, override_token] = 1.0 + skip_sampling = True + elif ahead_idx >= self.n_ahead - 1: + if labels is not None: # we're in the talk phase + cur_talk_n = ahead_idx - (self.n_ahead - 1) + 1 + # print("Setting rm to labels", cur_talk_n, "during", ahead_idx) + shift_labels = labels[..., cur_talk_n:].contiguous().to(probabilities_2d.device) + padding = torch.full_like( + labels[..., :cur_talk_n], + self.tokenizer.pad_token_id, + dtype=torch.long, + device=shift_labels.device + ) + new_rm_tokens = torch.cat( + [shift_labels, padding], + dim=-1 + ) + # convert rm tokens to one-hot + probabilities_2d = F.one_hot(new_rm_tokens, num_classes=self.vocab_size).reshape(-1, self.vocab_size).to(probabilities_2d.dtype) + skip_sampling = True + else: + continue + temperature = self.gumbel_temperature if self.training else 0.001 + prev_sample_probs = sample_probs + sample_probs = probabilities_2d + if ahead_idx < self.n_ahead - 1 and not skip_sampling: + probabilities_2d = F.gumbel_softmax(sample_probs, tau=temperature, hard=True, dim=-1) + if self.gumbel_detach: + probabilities_2d = probabilities_2d.detach() + sampled_token_history.append(probabilities_2d.argmax(dim=-1).detach().cpu()) + # convert rm logits directly to embeddings + contains_start = self.use_start_thought_token and (probabilities_2d[..., self.start_token_id].sum() > 0) + contains_end = self.use_end_thought_token and (probabilities_2d[..., self.end_token_id].sum() > 0) + contains_thought = contains_start or contains_end + + if not contains_thought: + with torch.set_grad_enabled(not self.train_only_thinking_embedding): + inputs_embeds = probabilities_2d @ (self.model.embed_tokens.weight.to(probabilities.device).to(probabilities.dtype)) + else: + thought_id = self.start_token_id if contains_start else self.end_token_id + cur_thought_embedding = start_embedding if contains_start else end_embedding + if self.use_reparam_for_thought_embeddings: + inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype) + inputs_embeds = inputs_embeds * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0] + if contains_start: + sampled_start = inputs_embeds.clone().detach() + else: + sampled_end = inputs_embeds.clone().detach() + else: + inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1) + inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype) + inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype) + + if len(attention_mask.shape) == 2: + breakpoint() + else: + original_attention = attention_mask[..., :attention_mask.shape[-2]] + if self.use_upper_triangular: + new_attention = original_attention + else: + original_attention = original_attention == attention_mask.max() + # because eye isn't implemented for BF16, we need to handle the case + if not attention_mask.dtype == torch.bfloat16: + new_attention = torch.eye( + seq_len, dtype=attention_mask.dtype, device=attention_mask.device + ) + else: + new_attention = torch.eye( + seq_len, dtype=torch.float32, device=attention_mask.device + ).to(attention_mask.dtype) + + new_attention = new_attention.view(1, 1, seq_len, seq_len).repeat(input_ids.shape[0], 1, 1, 1) + new_attention = new_attention * original_attention + new_attention[new_attention == 0] = attention_mask.min() + new_attention[new_attention == 1] = attention_mask.max() + attention_mask = torch.cat([attention_mask, new_attention], dim=-1) + past_key_values = outputs.past_key_values + position_ids = position_ids + 1 + + if labels is not None and (self.n_ahead > 1 or not self.base_original_mode): + # Shift so that tokens < n predict n + # logits: abcdef -> bcdef? -> cdef?? + # labels: abcdef -> ?bcdef -> ??cdef + if ahead_idx == 0 and self.optimize_lm_head_only_at_start: + loss_logits = initial_loss_logits + else: + loss_logits = logits + shift_idx = 1 + max(0, ahead_idx - (self.n_ahead - 1)) + shift_logits = loss_logits[..., :-shift_idx, :].contiguous() + shift_labels = labels[..., shift_idx:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss(reduction="none") + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + # if shift_labels.min() == self.tokenizer.pad_token_id: + shift_labels = torch.where(shift_labels == self.tokenizer.pad_token_id, -100, shift_labels) + unreduced_loss = loss_fct(shift_logits, shift_labels) + if torch.any(unreduced_loss != unreduced_loss): + raise ValueError("NaN loss") + unreduced_loss = unreduced_loss.reshape(logits.shape[0], -1) + loss_list.append(unreduced_loss) + + + if self.use_policy_loss and ahead_idx > 0 and (ahead_idx > 1 or not self.use_start_thought_token): + # we treat the change in loss as the reward + previous_loss = loss_list[-2] + # for example, suppose n_ahead = 3 and n_ahead_talk = 2 + # note that we end at self.n_ahead + self.n_ahead_talk - 2 + # in this case, 5 - 2 = 3, so we end at ahead_idx = 3 + # we also predict the next token at ahead_idx = 2 + # when we get to ahead_idx = 2, we predict ahead + # so we shift by 1 + # note that this is ahead_idx = n_ahead - 1 + # when we get to ahead_idx = 3, we predict ahead + # so we shift by 2 + # note that this is ahead_idx = n_ahead + if ahead_idx < self.n_ahead - 1: + shift_amount = 0 + original_dqn_reward = (previous_loss - unreduced_loss).detach() + if self.first_and_last_mode: + original_dqn_reward = original_dqn_reward * 0.0 + else: + # logits vs cur_policy_shift_logits + # let's look at rm_logits and prev_rm_logits + shift_amount = max(0, ahead_idx - (self.n_ahead - 1)) + # let's say shift_amount = 2 + # abcdefg -> bcdefg? -> cdefg?? + # logits = [a b]c d e f[g] + # labels = [a b c]d e f g + cur_policy_shift_logits = initial_loss_logits[..., shift_amount:-1, :].contiguous().detach() + cur_policy_shift_labels = labels[..., 1 + shift_amount:].contiguous() + # Flatten the tokens + cur_policy_loss_fct = CrossEntropyLoss(reduction="none") + cur_policy_shift_logits = cur_policy_shift_logits.view(-1, self.config.vocab_size) + cur_policy_shift_labels = cur_policy_shift_labels.view(-1).clone() + # Enable model parallelism + cur_policy_shift_labels[cur_policy_shift_labels == self.tokenizer.pad_token_id] = -100 + cur_policy_shift_labels = cur_policy_shift_labels.to(cur_policy_shift_labels.device) + cur_policy_reward_base_loss = loss_fct( + cur_policy_shift_logits, cur_policy_shift_labels.to(cur_policy_shift_logits.device) + ).reshape(logits.shape[0], -1) + original_dqn_reward = cur_policy_reward_base_loss.detach() - unreduced_loss + + if not did_skip_sampling: + nonzero_indices = prev_probabilities_2d.nonzero() + action_loglikelihoods = F.log_softmax(prev_sample_probs / self.reinforce_temperature, dim=-1)[nonzero_indices[:, 0], nonzero_indices[:, 1]] + action_loglikelihoods_2d = action_loglikelihoods.reshape(batch_size, -1)[:, :-1 - shift_amount] + action_loglikelihoods_list.append(action_loglikelihoods_2d) + if policy_reward is None: + policy_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)] + else: + if self.n_ahead_talk > shift_amount: + added_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)] + else: + added_reward = original_dqn_reward + policy_reward += added_reward + + if self.use_policy_loss and ahead_idx == self.n_ahead + self.n_ahead_talk - 2: + # only compute during the thinking phase + if self.use_reparam_for_thought_embeddings and (self.use_start_thought_token or self.use_end_thought_token): + # sampled_start, sampled_end + # calculate the log likelihood of the start and end embeddings sampled from a multivariate normal distribution + # with mean start_embedding[0] and standard deviation start_embedding[1] + if self.use_start_thought_token: + exp_start_std = torch.exp(start_embedding[1]) + start_loglikelihood = -0.5 * (sampled_start.detach() - start_embedding[0]) ** 2 / exp_start_std ** 2 - start_embedding[1] - 0.5 * math.log(2 * math.pi) + start_loglikelihood = start_loglikelihood.mean(dim=-1) + if self.use_end_thought_token: + exp_end_std = torch.exp(end_embedding[1]) + end_loglikelihood = -0.5 * (sampled_end.detach() - end_embedding[0]) ** 2 / exp_end_std ** 2 - end_embedding[1] - 0.5 * math.log(2 * math.pi) + end_loglikelihood = end_loglikelihood.mean(dim=-1) + # we use the mean instead of the sum to prevent dependence on the dimensionality of the embeddings + if self.use_end_thought_token and self.use_policy_loss_for_end_thought: + action_loglikelihoods_list.append(end_loglikelihood) + if self.use_start_thought_token: + action_loglikelihoods_list.append(start_loglikelihood) + + if ahead_idx == self.n_ahead + self.n_ahead_talk - 2 and self.eval_mode: + with torch.no_grad(): + # calculate the 0.75 quantile of the rewards + filtered_tokens = input_ids[:, :policy_reward.shape[-1]].cpu().detach().numpy().flatten() + filtered_tokens_mask = filtered_tokens != self.tokenizer.pad_token_id + filtered_tokens = filtered_tokens[filtered_tokens_mask] + filtered_rewards = policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten() + filtered_rewards = filtered_rewards[filtered_tokens_mask] + + abs_reward_list = np.abs(policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten()) + abs_reward_list = abs_reward_list[filtered_tokens_mask] + medium_quantile = np.quantile(abs_reward_list, 0.5) + upper_quantile = np.quantile(abs_reward_list, 0.95) + + for action_loglikelihoods_2d in action_loglikelihoods_list: + train_policy_reward = policy_reward + + # discard rewards below the mean + if self.trice_mode and self.n_passes > 1: + batched_policy_reward = train_policy_reward.reshape(-1, self.n_passes, train_policy_reward.shape[-1]) + # average over the passes + train_policy_reward = batched_policy_reward - batched_policy_reward.mean(dim=1, keepdim=True) + train_policy_reward = train_policy_reward.reshape(-1, train_policy_reward.shape[-1]) + + if self.subtract_mean_reward: + train_policy_reward = train_policy_reward - train_policy_reward.mean() + if self.remove_negative_rewards: + fixed_policy_reward = train_policy_reward.detach().clamp(min=0) + else: + fixed_policy_reward = train_policy_reward.detach() + actor_loss = -fixed_policy_reward * action_loglikelihoods_2d[:, :policy_reward.shape[-1]].to(policy_reward.device) + if action_loglikelihoods_2d.mean() < -1e4 and not self.use_policy_loss_just_for_thoughts: + # This will only happen when we force the next token to be the end of thought token + break + dqn_loss_list.append(actor_loss.mean()) + + if loss_list: + if self.first_and_last_mode: + loss = sum( + self.loss_mean(loss_list[-(i + 1)]) for i in range(self.n_ahead_talk) + ) * (1 - self.original_loss_weight) / self.n_ahead_talk + loss = loss + self.loss_mean(loss_list[0]) * self.original_loss_weight + # Let's NaN out the others + # e.g. if n_ahead_talk = 2 and the list is 5 long, we want to NaN out 1, 2 but keep 0, 3, 4 + for i in range(1, len(loss_list) - self.n_ahead_talk): + loss_list[i] = loss_list[i] * math.nan + elif self.first_only: + loss = self.loss_mean(loss_list[0]) + elif self.final_only_mode: + loss = sum( + self.loss_mean(loss_list[-i]) for i in range(1, self.n_ahead_talk + 1) + ) / self.n_ahead_talk + else: + loss = None + for i in range(len(loss_list)): + cur_loss = self.loss_mean(loss_list[i]) + if loss is not None: + loss = loss + cur_loss.to(loss.device) + else: + loss = cur_loss + loss = loss / len(loss_list) + + loss = loss * self.base_loss_beta + + if dqn_loss_list: + dqn_loss = sum(dqn_loss_list) / len(dqn_loss_list) + if self.include_policy_loss: + if loss is not None: + loss += dqn_loss * self.policy_loss_beta + else: + loss = dqn_loss * self.policy_loss_beta + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + base_log_dict = { + f"loss_{i}": nonzero_mean(loss_list[i]) for i in range(len(loss_list)) + } + + if loss is not None: + base_log_dict["loss_train"] = loss.item() + + for loss_key, loss_val in base_log_dict.items(): + log_dict[loss_key] += loss_val / self.n_tokens_print + + if self.use_policy_loss and policy_reward is not None: + log_dict["policy_loss"] += dqn_loss / self.n_tokens_print + log_dict["policy_reward"] += policy_reward.mean() / self.n_tokens_print + + if not loss_list: + if loss is not None: + log_dict["loss_0"] += loss / self.n_tokens_print + else: + log_dict["loss_final"] += nonzero_mean(loss_list[-1]) / self.n_tokens_print + log_dict["loss_talk"] += sum(nonzero_mean(cur_loss_item) for cur_loss_item in loss_list[-self.n_ahead_talk:]) / self.n_ahead_talk / self.n_tokens_print + + # also log relative losses to loss_0 + if loss_list: + for i in range(len(loss_list)): + talk_idx = min(max(i - (self.n_ahead - 1), 0), len(talk_loss_list) - 1) + if not talk_loss_list: + cur_talk_loss = nonzero_mean(loss_list[0]) + else: + cur_talk_loss = talk_loss_list[talk_idx] + log_dict[f"rel_loss_{i}"] += (nonzero_mean(loss_list[i]) - cur_talk_loss) / self.n_tokens_print + if self.training: + self.training_steps += 1 + + if not self.training: + self.n_ahead_talk = n_ahead_talk_to_restore + self.n_passes = n_passes_to_restore + return CausalLMOutputWithPast( + loss=loss if loss is not None else None, + logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs + ): + # Omit tokens covered by past_key_values + if past_key_values is not None: + if isinstance(past_key_values, Cache): + cache_length = past_key_values.get_seq_length() + past_length = past_key_values.seen_tokens + max_cache_length = past_key_values.get_max_length() + else: + cache_length = past_length = past_key_values[0][0].shape[2] + max_cache_length = None + + # Keep only the unprocessed tokens: + # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where + # some of the inputs are exclusively passed as part of the cache (e.g. when passing inputs_embeds as + # input) + if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: + input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] + # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard + # input_ids based on the past_length. + elif past_length < input_ids.shape[1]: + input_ids = input_ids[:, past_length:] + # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. + + # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. + if ( + max_cache_length is not None + and attention_mask is not None + and cache_length + input_ids.shape[1] > max_cache_length + ): + attention_mask = attention_mask[:, -max_cache_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + +class MistralQuietForCausalLM(MistralPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.model = MistralModel(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + self.max_thoughts = config.max_thoughts + self.merged_lm_and_talk_heads = config.merged_lm_and_talk_heads + self.use_concat_talk_head = config.use_concat_talk_head + self.use_shallow_talk = config.use_shallow_talk + self.use_complex_talk_head = config.use_complex_talk_head + self.use_weighted_talk_head = config.use_weighted_talk_head + # the weighted head will output a single value, so it can't be passed to the lm head + assert not (self.use_weighted_talk_head and self.use_shallow_talk) + + self.n_ahead = 1 + self.n_ahead_talk = 1 + self.n_passes = 1 + self.n_tokens_print = 1 + self.gradient_accumulation_steps = 1 + self.training_steps = 0 + self.tokenizer = None + self.start_token_id = None + self.end_token_id = None + self.rm_initialized = False + self.residual_talk_head = True + self.thought_init_std_scale = 1e-2 + + self.final_only_mode = False + self.first_and_last_mode = True + self.first_only = False + self.original_loss_weight = 0.5 + + self.cumulative_residual = False + self.clever_residual = False + self.skip_residual = False + self.no_residual = True + + self.optimize_lm_head_only_at_start = False + self.optimize_model_only_at_start = False + + if self.optimize_model_only_at_start: + raise NotImplementedError + self.train_only_thinking_embedding = False + self.weighted_embeddings = False + self.use_start_thought_token = True + self.use_end_thought_token = True + self.initialize_thought_embedding_to_normal = False + self.initial_start_token = "---" + self.initial_end_token = "---" + self.output_logits_at_the_end = True + + self.gumbel_temperature = 0.001 + + self.use_policy_loss = True + self.include_policy_loss = True + self.trice_mode = True + self.remove_negative_rewards = True + self.use_policy_loss_for_end_thought = True + + self.base_original_mode = False + self.original_mode = False + + self.thought_prefix = "(Let's think step by step" + self.tokenized_thought_prefix = None + self.log_dict = defaultdict(int) + self.eval_log_dict = defaultdict(int) + self.print_final_only = True + self.loss_mean = loss_mean + self.all_rewards = [] + self.all_unreduced_losses = [] + self.kill_after = 100 + + self.start_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size)) + self.end_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size)) + + self.policy_loss_beta = 1e6 + self.embedding_scale = 1e2 + self.reinforce_temperature = 3 + self.base_loss_beta = 1 + + # Not used in the paper: + self.use_thought_prefix = False + self.use_reparam_for_thought_embeddings = False + self.use_upper_triangular = False + self.subtract_mean_reward = False + self.comparison_mode = False + self.gumbel_detach = True + + # For visualization + self.eval_mode = False + + num_talk = 1 + talk_input_dim = config.hidden_size if not self.use_concat_talk_head else config.hidden_size * 2 + if self.use_weighted_talk_head: + talk_output_dim = 1 + else: + talk_output_dim = config.hidden_size if self.use_shallow_talk else config.vocab_size + + if not self.merged_lm_and_talk_heads: + if self.use_complex_talk_head: + self.talk_head = nn.ModuleList([nn.Sequential( + nn.Linear(talk_input_dim, config.hidden_size), + nn.ReLU(), + nn.Linear(config.hidden_size, config.hidden_size), + nn.ReLU(), + nn.Linear(config.hidden_size, talk_output_dim, bias=False) + )]) + else: + self.talk_head = nn.ModuleList([nn.Sequential( + nn.Linear(talk_input_dim, talk_output_dim, bias=False) + )]) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + def calculate_policy_loss(self, thoughts, rewards): + thought_log_probs = [] + for thought in thoughts: + thought_log_prob = self.lm_head(thought).log_softmax(dim=-1) + thought_log_probs.append(thought_log_prob) + + thought_log_probs = torch.stack(thought_log_probs, dim=1) # (batch_size, num_thoughts, seq_length, vocab_size) + thought_probs = torch.exp(thought_log_probs) + + policy_loss = -torch.mean(thought_log_probs * rewards.unsqueeze(-1).unsqueeze(-1)) + + return policy_loss + + def _generate_thoughts(self, hidden_states, max_length): + batch_size = hidden_states.size(0) + thought_ids = torch.zeros((batch_size, self.config.max_thoughts, max_length), dtype=torch.long, device=hidden_states.device) + thought_embeddings = [] + + for i in range(self.config.max_thoughts): + thought_input_ids = torch.zeros((batch_size, 1), dtype=torch.long, device=hidden_states.device) + thought_outputs = self.generate( + input_ids=thought_input_ids, + max_length=max_length, + do_sample=True, + top_k=50, + top_p=0.95, + pad_token_id=self.config.pad_token_id, + eos_token_id=self.config.eos_token_id, + ) + thought_ids[:, i, :] = thought_outputs + thought_embeddings.append(self.get_input_embeddings()(thought_outputs)) + + thought_embeddings = torch.stack(thought_embeddings, dim=1) + return thought_ids, thought_embeddings + + @torch.no_grad() + def infer( + self, + input_ids: torch.LongTensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + batch_size, seq_len = input_ids.shape + + # Save the original input_ids and attention_mask for later use + original_input_ids = input_ids.clone() + original_attention_mask = attention_mask.clone() if attention_mask is not None else None + + # Append the start thought token to the input sequence + start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>") + input_ids = torch.cat([input_ids, torch.tensor([[start_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1) + seq_len += 1 + + # Update the attention mask + if attention_mask is not None: + attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) + + # Generate the continuation + continuation_length = self.n_ahead - 2 + new_key_values = past_key_values + + start_time = time.time() + for continuation_idx in range(continuation_length): + outputs = self.model( + input_ids=input_ids if continuation_idx == 0 else next_token_id.unsqueeze(-1).to(input_ids.device), + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=new_key_values, + inputs_embeds=inputs_embeds, + use_cache=True, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + new_key_values = outputs.past_key_values + + hidden_states = outputs[0] + + logits = self.lm_head(hidden_states) + logits = logits[:, -1, :] # Only consider the last token + + # Apply Gumbel-Softmax to the logits + next_token_logits = F.gumbel_softmax(logits, tau=self.gumbel_temperature, hard=True, dim=-1) + next_token_id = torch.argmax(next_token_logits, dim=-1) + + # Append the generated token to the input sequence + input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1).to(input_ids.device)], dim=-1) + seq_len += 1 + + # Update the attention mask + if attention_mask is not None: + attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) + + # Append the end thought token to the input sequence + end_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>") + input_ids = torch.cat([input_ids, torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1) + seq_len += 1 + + # Update the attention mask + if attention_mask is not None: + attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) + + # Get the hidden states before and after the thought + outputs_before = self.model( + input_ids=original_input_ids, + attention_mask=original_attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states_before = outputs_before[0][:, -1:, :] + + # two new tokens: last continuation token and end thought token + outputs_after = self.model( + input_ids=torch.cat([next_token_id.unsqueeze(-1).to(input_ids.device), torch.tensor(end_thought_token_id).unsqueeze(-1).unsqueeze(-1).to(input_ids.device)], dim=-1), + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=new_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states_after = outputs_after[0][:, -1:, :] + + # Apply the talk head to get the mixing weight + mixing_weight = self.talk_head[0](torch.cat([hidden_states_before, hidden_states_after], dim=-1)) + + # Apply the mixing weight to the hidden states + mixed_hidden_states = (1 - mixing_weight) * hidden_states_before + mixing_weight * hidden_states_after + + # Apply the language model head to get the final logits + logits = self.lm_head(mixed_hidden_states) + return logits + + @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, QuietForCausalLM + + >>> model = QuietForCausalLM.from_pretrained("quietai/Quiet-7B-v0.1") + >>> tokenizer = AutoTokenizer.from_pretrained("quietai/Quiet-7B-v0.1") + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=True, + ) + hidden_states = outputs.last_hidden_state + logits = self.lm_head(hidden_states) + + thought_ids, thought_embeddings = self._generate_thoughts(hidden_states, max_length=self.config.thought_length) + thought_hidden_states = self.model(inputs_embeds=thought_embeddings).last_hidden_state + + # Compute thought logits + thought_logits = self.lm_head(thought_hidden_states) + + # Mix base and thought logits + mixed_logits = logits.unsqueeze(1) + self.mixing_head(thought_logits) + mixed_logits = mixed_logits.view(-1, mixed_logits.size(-1)) + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = mixed_logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) + + if self.use_policy_loss: + rewards = loss.detach().unsqueeze(1).repeat(1, self.max_thoughts) + if self.remove_negative_rewards: + rewards = torch.clamp(rewards, min=0) + policy_loss = self.calculate_policy_loss(thought_ids, rewards) + loss = loss + policy_loss + else: + loss = None + + if not return_dict: + output = (mixed_logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss if loss is not None else None, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs + ): + # Omit tokens covered by past_key_values + if past_key_values is not None: + if isinstance(past_key_values, Cache): + cache_length = past_key_values.get_seq_length() + past_length = past_key_values.seen_tokens + max_cache_length = past_key_values.get_max_length() + else: + cache_length = past_length = past_key_values[0][0].shape[2] + max_cache_length = None + + # Keep only the unprocessed tokens: + # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where + # some of the inputs are exclusively passed as part of the cache (e.g. when passing inputs_embeds as + # input) + if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: + input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] + # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard + # input_ids based on the past_length. + elif past_length < input_ids.shape[1]: + input_ids = input_ids[:, past_length:] + # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. + + # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. + if ( + max_cache_length is not None + and attention_mask is not None + and cache_length + input_ids.shape[1] > max_cache_length + ): + attention_mask = attention_mask[:, -max_cache_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + + +############################## Extra Heads ################################# + +############# Sequence Classification ################# +@add_start_docstrings( + """ + The Mistral Model transformer with a sequence classification head on top (linear layer). + + [`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models + (e.g. GPT-2) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + MISTRAL_START_DOCSTRING, +) +# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mistral, LLAMA->MISTRAL +class MistralForSequenceClassification(MistralPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.model = MistralModel(config) + self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size = input_ids.shape[0] + else: + batch_size = inputs_embeds.shape[0] + + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility + sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 + sequence_lengths = sequence_lengths % input_ids.shape[-1] + sequence_lengths = sequence_lengths.to(logits.device) + else: + sequence_lengths = -1 + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] + + loss = None + if labels is not None: + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + +############# Token Classification ################# +@add_start_docstrings( + """ + The Mistral Model transformer with a token classification head on top (a linear layer on top of the hidden-states + output) e.g. for Named-Entity-Recognition (NER) tasks. + """, + MISTRAL_START_DOCSTRING, +) +# Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->Mistral, LLAMA->MISTRAL +class MistralForTokenClassification(MistralPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.model = MistralModel(config) + if getattr(config, "classifier_dropout", None) is not None: + classifier_dropout = config.classifier_dropout + elif getattr(config, "hidden_dropout", None) is not None: + classifier_dropout = config.hidden_dropout + else: + classifier_dropout = 0.1 + self.dropout = nn.Dropout(classifier_dropout) + self.score = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + sequence_output = self.dropout(sequence_output) + logits = self.score(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + +############# QuestionAnswer ################# +@add_start_docstrings( + """ +The Mistral Model transformer with a span classification head on top for extractive question-answering tasks like +SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + MISTRAL_START_DOCSTRING, +) +class MistralForQuestionAnswering(MistralPreTrainedModel): + base_model_prefix = "transformer" + + # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Llama + def __init__(self, config): + super().__init__(config) + self.transformer = MistralModel(config) + self.qa_outputs = nn.Linear(config.hidden_size, 2) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.transformer.embed_tokens + + def set_input_embeddings(self, value): + self.transformer.embed_tokens = value + + @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.transformer( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1).to(start_logits.device) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1).to(end_logits.device) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) +############################## Closed Extra Heads ########################### \ No newline at end of file