Upload 3 files
Browse files- _Train_Model.py +196 -0
- configuration_mistral.py +147 -6
_Train_Model.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, AutoConfig, BitsAndBytesConfig,AutoConfig
|
2 |
+
import time
|
3 |
+
import torch
|
4 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
5 |
+
import random
|
6 |
+
from datasets import load_dataset
|
7 |
+
from transformers import TrainingArguments
|
8 |
+
from trl import SFTTrainer
|
9 |
+
from peft import LoraConfig
|
10 |
+
# from accelerate import infer_auto_device_map, init_empty_weights, dispatch_model
|
11 |
+
from torch.nn import CrossEntropyLoss
|
12 |
+
torch.autograd.set_detect_anomaly(True)
|
13 |
+
random_seed = 42
|
14 |
+
torch.manual_seed(random_seed)
|
15 |
+
random.seed(random_seed)
|
16 |
+
# Set the device for each process
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
# torch.cuda.set_device(device)
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
n_ahead_talk_global = 4
|
23 |
+
n_passes_global = 2
|
24 |
+
n_ahead_global = 8
|
25 |
+
n_examples = 0
|
26 |
+
|
27 |
+
def model_init(params):
|
28 |
+
original = False
|
29 |
+
if params is None:
|
30 |
+
params = {}
|
31 |
+
else:
|
32 |
+
params = params.params
|
33 |
+
# save params to file
|
34 |
+
n_ahead = params.get("n_ahead", n_ahead_global if not original else 1)
|
35 |
+
n_ahead_talk = params.get("n_ahead_talk", n_ahead_talk_global if not original else 1)
|
36 |
+
n_passes = params.get("n_passes", n_passes_global if not original else 1)
|
37 |
+
gumbel_temperature = params.get("gumbel_temperature", 1)
|
38 |
+
use_start_thought_token = params.get("use_start_thought_token", True)
|
39 |
+
use_end_thought_token = params.get("use_end_thought_token", True)
|
40 |
+
include_policy_loss = params.get("include_policy_loss", True)
|
41 |
+
gumbel_detach = params.get("gumbel_detach", True)
|
42 |
+
merged_talk_heads = params.get("merged_talk_heads", True)
|
43 |
+
residual_think_head = params.get("residual_think_head", False)
|
44 |
+
optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False)
|
45 |
+
|
46 |
+
model_id = "LeroyDyer/SpydazWeb_AGI_MistralStar"
|
47 |
+
tokenizer_id = model_id
|
48 |
+
print("Loading model")
|
49 |
+
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(
|
51 |
+
model_id,
|
52 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
53 |
+
max_thoughts=n_ahead + n_ahead_talk + 1,
|
54 |
+
merged_talk_heads=merged_talk_heads,
|
55 |
+
merged_lm_and_talk_heads=False,
|
56 |
+
merged_lm_and_think_heads=True,
|
57 |
+
use_concat_talk_head=True,
|
58 |
+
use_shallow_think=True,
|
59 |
+
use_shallow_talk=False,
|
60 |
+
use_complex_think_head=False,
|
61 |
+
use_complex_talk_head=True,
|
62 |
+
use_weighted_talk_head=True,
|
63 |
+
trust_remote_code=True,
|
64 |
+
device_map="auto",
|
65 |
+
)
|
66 |
+
print("Loaded model")
|
67 |
+
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding_side="right")
|
69 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
model.gumbel_detach = gumbel_detach
|
74 |
+
model.include_policy_loss = include_policy_loss
|
75 |
+
model.use_end_thought_token = use_end_thought_token
|
76 |
+
model.use_start_thought_token = use_start_thought_token
|
77 |
+
model.n_ahead = n_ahead
|
78 |
+
model.n_ahead_talk = n_ahead_talk
|
79 |
+
model.n_passes = n_passes
|
80 |
+
model.residual_think_head = residual_think_head
|
81 |
+
model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start
|
82 |
+
model.gumbel_temperature = gumbel_temperature
|
83 |
+
model.original_mode = original
|
84 |
+
model.config_params = params
|
85 |
+
return model
|
86 |
+
|
87 |
+
model,tokenizer = model_init(None)
|
88 |
+
|
89 |
+
|
90 |
+
## TRAINING :
|
91 |
+
|
92 |
+
peft_config = LoraConfig(
|
93 |
+
r = 128, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
94 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
95 |
+
"gate_proj", "up_proj", "down_proj","lm_head", "embed_tokens"],
|
96 |
+
lora_alpha = 32,
|
97 |
+
lora_dropout = 0, # Supports any, but = 0 is optimized
|
98 |
+
bias = "none",
|
99 |
+
use_dora=True,
|
100 |
+
)
|
101 |
+
|
102 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, AutoConfig
|
103 |
+
from datasets import load_dataset
|
104 |
+
from transformers import TrainingArguments
|
105 |
+
from trl import SFTTrainer
|
106 |
+
from peft import LoraConfig
|
107 |
+
|
108 |
+
## DATA
|
109 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
110 |
+
|
111 |
+
### Instruction:
|
112 |
+
{}
|
113 |
+
|
114 |
+
### Input:
|
115 |
+
{}
|
116 |
+
|
117 |
+
### Response:
|
118 |
+
{}"""
|
119 |
+
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
|
120 |
+
def formatting_prompts_func(examples):
|
121 |
+
instructions = examples["instruction"]
|
122 |
+
inputs = examples["input"]
|
123 |
+
outputs = examples["output"]
|
124 |
+
texts = []
|
125 |
+
for instruction, input, output in zip(instructions, inputs, outputs):
|
126 |
+
# Must add EOS_TOKEN, otherwise your generation will go on forever!
|
127 |
+
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
|
128 |
+
texts.append(text)
|
129 |
+
return { "text" : texts, }
|
130 |
+
pass
|
131 |
+
dataset = load_dataset("gate369/Alpaca-Star", split = "train[:2000]")
|
132 |
+
dataset = dataset.shuffle(seed=3704)
|
133 |
+
dataset = dataset.map(formatting_prompts_func, batched = True,)
|
134 |
+
## TRAIN
|
135 |
+
|
136 |
+
max_seq_length = 1024
|
137 |
+
training_args = TrainingArguments(
|
138 |
+
output_dir="./out",
|
139 |
+
num_train_epochs=3,
|
140 |
+
per_device_train_batch_size=1,
|
141 |
+
gradient_checkpointing=False,
|
142 |
+
gradient_accumulation_steps=8,
|
143 |
+
optim="lion_32bit",
|
144 |
+
logging_steps=1,
|
145 |
+
save_strategy="steps",
|
146 |
+
max_steps=1000,
|
147 |
+
bf16=True,
|
148 |
+
tf32=False,
|
149 |
+
learning_rate=6e-05,
|
150 |
+
max_grad_norm=0.3,
|
151 |
+
warmup_ratio=0.06,
|
152 |
+
lr_scheduler_type="cosine",
|
153 |
+
push_to_hub=False,
|
154 |
+
|
155 |
+
)
|
156 |
+
trainer = SFTTrainer(
|
157 |
+
args=training_args,
|
158 |
+
train_dataset=dataset,
|
159 |
+
model=model,
|
160 |
+
tokenizer=tokenizer,
|
161 |
+
max_seq_length=max_seq_length,
|
162 |
+
dataset_text_field="text",
|
163 |
+
peft_config=peft_config,
|
164 |
+
)
|
165 |
+
trainer.train()
|
166 |
+
|
167 |
+
## SAVE
|
168 |
+
tokenizer.save_pretrained("SFTTrainerModel")
|
169 |
+
model.save_pretrained("SFTTrainerModel")
|
170 |
+
|
171 |
+
|
172 |
+
import os
|
173 |
+
import huggingface_hub
|
174 |
+
from huggingface_hub import notebook_login
|
175 |
+
from huggingface_hub import create_repo, HfApi
|
176 |
+
from huggingface_hub import hf_hub_download
|
177 |
+
from huggingface_hub import create_repo, HfApi
|
178 |
+
from huggingface_hub import snapshot_download
|
179 |
+
|
180 |
+
MODEL_NAME = "_Spydaz_Web_AI_MistralStar"
|
181 |
+
Folderinput = "SFTTrainerModel"
|
182 |
+
WRITE_TOKEN = ""
|
183 |
+
username = "LeroyDyer"
|
184 |
+
huggingface_hub.login(WRITE_TOKEN)
|
185 |
+
api = HfApi(token=WRITE_TOKEN)
|
186 |
+
# Create empty repo
|
187 |
+
api.create_repo(
|
188 |
+
repo_id = f"{username}/{MODEL_NAME}",
|
189 |
+
repo_type="model",
|
190 |
+
exist_ok=True,
|
191 |
+
)
|
192 |
+
|
193 |
+
api.upload_folder(
|
194 |
+
repo_id = f"{username}/{MODEL_NAME}",
|
195 |
+
folder_path = Folderinput
|
196 |
+
)
|
configuration_mistral.py
CHANGED
@@ -12,7 +12,7 @@
|
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
-
"""
|
16 |
|
17 |
from ...configuration_utils import PretrainedConfig
|
18 |
from ...utils import logging
|
@@ -20,11 +20,6 @@ from ...utils import logging
|
|
20 |
|
21 |
logger = logging.get_logger(__name__)
|
22 |
|
23 |
-
MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
-
"mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json",
|
25 |
-
"mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json",
|
26 |
-
}
|
27 |
-
|
28 |
|
29 |
class MistralConfig(PretrainedConfig):
|
30 |
r"""
|
@@ -163,6 +158,152 @@ class MistralConfig(PretrainedConfig):
|
|
163 |
self.use_complex_talk_head = use_complex_talk_head
|
164 |
self.use_weighted_talk_head = use_weighted_talk_head
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
super().__init__(
|
167 |
pad_token_id=pad_token_id,
|
168 |
bos_token_id=bos_token_id,
|
|
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
+
"""Mistral model configuration"""
|
16 |
|
17 |
from ...configuration_utils import PretrainedConfig
|
18 |
from ...utils import logging
|
|
|
20 |
|
21 |
logger = logging.get_logger(__name__)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
class MistralConfig(PretrainedConfig):
|
25 |
r"""
|
|
|
158 |
self.use_complex_talk_head = use_complex_talk_head
|
159 |
self.use_weighted_talk_head = use_weighted_talk_head
|
160 |
|
161 |
+
super().__init__(
|
162 |
+
pad_token_id=pad_token_id,
|
163 |
+
bos_token_id=bos_token_id,
|
164 |
+
eos_token_id=eos_token_id,
|
165 |
+
tie_word_embeddings=tie_word_embeddings,
|
166 |
+
**kwargs,
|
167 |
+
)
|
168 |
+
class MistralStarConfig(PretrainedConfig):
|
169 |
+
r"""
|
170 |
+
This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
|
171 |
+
Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
172 |
+
with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
|
173 |
+
|
174 |
+
[mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
175 |
+
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
176 |
+
|
177 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
178 |
+
documentation from [`PretrainedConfig`] for more information.
|
179 |
+
|
180 |
+
|
181 |
+
Args:
|
182 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
183 |
+
Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
|
184 |
+
`inputs_ids` passed when calling [`MistralModel`]
|
185 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
186 |
+
Dimension of the hidden representations.
|
187 |
+
intermediate_size (`int`, *optional*, defaults to 14336):
|
188 |
+
Dimension of the MLP representations.
|
189 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
190 |
+
Number of hidden layers in the Transformer encoder.
|
191 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
192 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
193 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
194 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
195 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
196 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
197 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
198 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
199 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
200 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
201 |
+
The non-linear activation function (function or string) in the decoder.
|
202 |
+
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
203 |
+
The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
|
204 |
+
allows sequence of up to 4096*32 tokens.
|
205 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
206 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
207 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
208 |
+
The epsilon used by the rms normalization layers.
|
209 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
210 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
211 |
+
relevant if `config.is_decoder=True`.
|
212 |
+
pad_token_id (`int`, *optional*):
|
213 |
+
The id of the padding token.
|
214 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
215 |
+
The id of the "beginning-of-sequence" token.
|
216 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
217 |
+
The id of the "end-of-sequence" token.
|
218 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
219 |
+
Whether the model's input and output word embeddings should be tied.
|
220 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
221 |
+
The base period of the RoPE embeddings.
|
222 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
223 |
+
Sliding window attention window size. If not specified, will default to `4096`.
|
224 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
225 |
+
The dropout ratio for the attention probabilities.
|
226 |
+
|
227 |
+
```python
|
228 |
+
>>> from transformers import MistralModel, MistralConfig
|
229 |
+
|
230 |
+
>>> # Initializing a Mistral 7B style configuration
|
231 |
+
>>> configuration = MistralConfig()
|
232 |
+
|
233 |
+
>>> # Initializing a model from the Mistral 7B style configuration
|
234 |
+
>>> model = MistralModel(configuration)
|
235 |
+
|
236 |
+
>>> # Accessing the model configuration
|
237 |
+
>>> configuration = model.config
|
238 |
+
```"""
|
239 |
+
|
240 |
+
model_type = "mistralstar"
|
241 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
242 |
+
|
243 |
+
def __init__(
|
244 |
+
self,
|
245 |
+
vocab_size=32000,
|
246 |
+
hidden_size=4096,
|
247 |
+
intermediate_size=14336,
|
248 |
+
num_hidden_layers=32,
|
249 |
+
num_attention_heads=32,
|
250 |
+
num_key_value_heads=8,
|
251 |
+
hidden_act="silu",
|
252 |
+
max_position_embeddings=4096 * 32,
|
253 |
+
initializer_range=0.02,
|
254 |
+
rms_norm_eps=1e-6,
|
255 |
+
use_cache=True,
|
256 |
+
pad_token_id=None,
|
257 |
+
bos_token_id=1,
|
258 |
+
eos_token_id=2,
|
259 |
+
tie_word_embeddings=False,
|
260 |
+
rope_theta=10000.0,
|
261 |
+
sliding_window=4096,
|
262 |
+
attention_dropout=0.0,
|
263 |
+
max_thoughts=16,
|
264 |
+
thought_length = 10,
|
265 |
+
merged_talk_heads=True,
|
266 |
+
merged_lm_and_talk_heads=False,
|
267 |
+
merged_lm_and_think_heads=True,
|
268 |
+
use_concat_talk_head=True,
|
269 |
+
use_shallow_think=True,
|
270 |
+
use_shallow_talk=False,
|
271 |
+
use_complex_think_head=False,
|
272 |
+
use_complex_talk_head=True,
|
273 |
+
use_weighted_talk_head=True,
|
274 |
+
**kwargs,
|
275 |
+
):
|
276 |
+
self.vocab_size = vocab_size
|
277 |
+
self.max_position_embeddings = max_position_embeddings
|
278 |
+
self.hidden_size = hidden_size
|
279 |
+
self.intermediate_size = intermediate_size
|
280 |
+
self.num_hidden_layers = num_hidden_layers
|
281 |
+
self.num_attention_heads = num_attention_heads
|
282 |
+
self.sliding_window = sliding_window
|
283 |
+
|
284 |
+
# for backward compatibility
|
285 |
+
if num_key_value_heads is None:
|
286 |
+
num_key_value_heads = num_attention_heads
|
287 |
+
|
288 |
+
self.num_key_value_heads = num_key_value_heads
|
289 |
+
self.hidden_act = hidden_act
|
290 |
+
self.initializer_range = initializer_range
|
291 |
+
self.rms_norm_eps = rms_norm_eps
|
292 |
+
self.use_cache = use_cache
|
293 |
+
self.rope_theta = rope_theta
|
294 |
+
self.attention_dropout = attention_dropout
|
295 |
+
self.max_thoughts = max_thoughts
|
296 |
+
self.thought_length = thought_length
|
297 |
+
self.merged_talk_heads = merged_talk_heads
|
298 |
+
self.merged_lm_and_talk_heads = merged_lm_and_talk_heads
|
299 |
+
self.merged_lm_and_think_heads = merged_lm_and_think_heads
|
300 |
+
self.use_concat_talk_head = use_concat_talk_head
|
301 |
+
self.use_shallow_think = use_shallow_think
|
302 |
+
self.use_shallow_talk = use_shallow_talk
|
303 |
+
self.use_complex_think_head = use_complex_think_head
|
304 |
+
self.use_complex_talk_head = use_complex_talk_head
|
305 |
+
self.use_weighted_talk_head = use_weighted_talk_head
|
306 |
+
|
307 |
super().__init__(
|
308 |
pad_token_id=pad_token_id,
|
309 |
bos_token_id=bos_token_id,
|