File size: 20,447 Bytes
d7c7584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from transformers.auto.configuration_auto import AutoConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging



if TYPE_CHECKING:
    from ... import PreTrainedTokenizerBase, TensorType

logger = logging.get_logger(__name__)

""" Mistral model configuration"""



MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json",
    "mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json",
}

class EncoderDecoderConfig(PretrainedConfig):
    is_composition = True   

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        if "encoder" not in kwargs or "decoder" not in kwargs:
            raise ValueError(
                f"A configuraton of type {self.model_type} cannot be instantiated because "
                f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}"
            )

        encoder_config = kwargs.pop("encoder")
        encoder_model_type = encoder_config.pop("model_type")
        decoder_config = kwargs.pop("decoder")
        decoder_model_type = decoder_config.pop("model_type")

        self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config)
        self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config)
        self.is_encoder_decoder = True
    @classmethod
    def from_encoder_decoder_configs(
        cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs
    ) -> PretrainedConfig:
        r"""
        Instantiate a [`SpeechEncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model
        configuration and decoder model configuration.

        Returns:
            [`SpeechEncoderDecoderConfig`]: An instance of a configuration object
        """
        logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config")
        decoder_config.is_decoder = True
        decoder_config.add_cross_attention = True

        return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs)

class VisionEncoderDecoderConfig(PretrainedConfig):
    r"""
    [`VisionEncoderDecoderConfig`] is the configuration class to store the configuration of a
    [`VisionEncoderDecoderModel`]. It is used to instantiate a Vision-Encoder-Text-Decoder model according to the
    specified arguments, defining the encoder and decoder configs.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        kwargs (*optional*):
            Dictionary of keyword arguments. Notably:

                - **encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
                  the encoder config.
                - **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
                  the decoder config.

    Examples:

    ```python
    >>> from transformers import BertConfig, ViTConfig, VisionEncoderDecoderConfig, VisionEncoderDecoderModel

    >>> # Initializing a ViT & BERT style configuration
    >>> config_encoder = ViTConfig()
    >>> config_decoder = BertConfig()

    >>> config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)

    >>> # Initializing a ViTBert model (with random weights) from a ViT & google-bert/bert-base-uncased style configurations
    >>> model = VisionEncoderDecoderModel(config=config)

    >>> # Accessing the model configuration
    >>> config_encoder = model.config.encoder
    >>> config_decoder = model.config.decoder
    >>> # set decoder config to causal lm
    >>> config_decoder.is_decoder = True
    >>> config_decoder.add_cross_attention = True

    >>> # Saving the model, including its configuration
    >>> model.save_pretrained("my-model")

    >>> # loading model and config from pretrained folder
    >>> encoder_decoder_config = VisionEncoderDecoderConfig.from_pretrained("my-model")
    >>> model = VisionEncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config)
    ```"""

    model_type = "vision-encoder-decoder"
    is_composition = True

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        if "encoder" not in kwargs or "decoder" not in kwargs:
            raise ValueError(
                f"A configuraton of type {self.model_type} cannot be instantiated because "
                f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}"
            )

        encoder_config = kwargs.pop("encoder")
        encoder_model_type = encoder_config.pop("model_type")
        decoder_config = kwargs.pop("decoder")
        decoder_model_type = decoder_config.pop("model_type")

        self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config)
        self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config)
        self.is_encoder_decoder = True

    @classmethod
    def from_encoder_decoder_configs(
        cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs
    ) -> PretrainedConfig:
        r"""
        Instantiate a [`VisionEncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model
        configuration and decoder model configuration.

        Returns:
            [`VisionEncoderDecoderConfig`]: An instance of a configuration object
        """
        logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config")
        decoder_config.is_decoder = True
        decoder_config.add_cross_attention = True

        return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs)

class SpeechEncoderDecoderConfig(PretrainedConfig):
    r"""
    [`SpeechEncoderDecoderConfig`] is the configuration class to store the configuration of a
    [`SpeechEncoderDecoderModel`]. It is used to instantiate an Encoder Decoder model according to the specified
    arguments, defining the encoder and decoder configs.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        kwargs (*optional*):
            Dictionary of keyword arguments. Notably:

                - **encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
                  the encoder config.
                - **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
                  the decoder config.

    Examples:

    ```python
    >>> from transformers import BertConfig, Wav2Vec2Config, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel

    >>> # Initializing a Wav2Vec2 & BERT style configuration
    >>> config_encoder = Wav2Vec2Config()
    >>> config_decoder = BertConfig()

    >>> config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)

    >>> # Initializing a Wav2Vec2Bert model from a Wav2Vec2 & google-bert/bert-base-uncased style configurations
    >>> model = SpeechEncoderDecoderModel(config=config)

    >>> # Accessing the model configuration
    >>> config_encoder = model.config.encoder
    >>> config_decoder = model.config.decoder
    >>> # set decoder config to causal lm
    >>> config_decoder.is_decoder = True
    >>> config_decoder.add_cross_attention = True

    >>> # Saving the model, including its configuration
    >>> model.save_pretrained("my-model")

    >>> # loading model and config from pretrained folder
    >>> encoder_decoder_config = SpeechEncoderDecoderConfig.from_pretrained("my-model")
    >>> model = SpeechEncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config)
    ```"""

    model_type = "speech-encoder-decoder"
    is_composition = True

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        if "encoder" not in kwargs or "decoder" not in kwargs:
            raise ValueError(
                f"A configuraton of type {self.model_type} cannot be instantiated because not both `encoder` and"
                f" `decoder` sub-configurations are passed, but only {kwargs}"
            )

        encoder_config = kwargs.pop("encoder")
        encoder_model_type = encoder_config.pop("model_type")
        decoder_config = kwargs.pop("decoder")
        decoder_model_type = decoder_config.pop("model_type")

        self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config)
        self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config)
        self.is_encoder_decoder = True

    @classmethod
    def from_encoder_decoder_configs(
        cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs
    ) -> PretrainedConfig:
        r"""
        Instantiate a [`SpeechEncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model
        configuration and decoder model configuration.

        Returns:
            [`SpeechEncoderDecoderConfig`]: An instance of a configuration object
        """
        logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config")
        decoder_config.is_decoder = True
        decoder_config.add_cross_attention = True

        return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs)

class MistralConfig(PretrainedConfig):
    is_composition = True   

    r"""
    This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
    Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.

    [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
    [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`MistralModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 14336):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
            The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
            allows sequence of up to 4096*32 tokens.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the "end-of-sequence" token.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        sliding_window (`int`, *optional*, defaults to 4096):
            Sliding window attention window size. If not specified, will default to `4096`.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    ```python
    >>> from transformers import MistralModel, MistralConfig

    >>> # Initializing a Mistral 7B style configuration
    >>> configuration = MistralConfig()

    >>> # Initializing a model from the Mistral 7B style configuration
    >>> model = MistralModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = ["mistral","speech-encoder-decoder","image-encoder-decoder","mistral-encoder-decoder"]
    # model_type = "mistral-encoder-decoder"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=32000,
        hidden_size=4096,
        intermediate_size=14336,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=8,
        hidden_act="silu",
        max_position_embeddings=4096 * 32,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=1,
        eos_token_id=2,
        tie_word_embeddings=False,
        sliding_window=4096,
        attention_dropout=0.0,

# for yarn Later
        rope_theta=10000.0,
        rope_scaling=None,
# for thought generation Later
        max_thoughts=16,
        max_temperature=10,
        complexity_factor = 0.5,
        merged_talk_heads=True,
        merged_lm_and_talk_heads=False,
        merged_lm_and_think_heads=True,
        use_concat_talk_head=True,
        use_shallow_think=True,
        use_shallow_talk=False,
        use_complex_think_head=False,
        use_complex_talk_head=True,
        use_weighted_talk_head=True,
        hidden_dropout_prob=0.00,

        **kwargs,
    ):
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.sliding_window = sliding_window

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.attention_dropout = attention_dropout
# yarn  
        self.rope_scaling = rope_scaling
        self._rope_scaling_validation()
        self.rope_theta = rope_theta
#Thought gen
        self.max_thoughts = max_thoughts
        self.complexity_factor = complexity_factor
        self.max_temperature = max_temperature
        self.merged_talk_heads = merged_talk_heads
        self.merged_lm_and_talk_heads = merged_lm_and_talk_heads
        self.merged_lm_and_think_heads = merged_lm_and_think_heads
        self.use_concat_talk_head = use_concat_talk_head
        self.use_shallow_think = use_shallow_think
        self.use_shallow_talk = use_shallow_talk
        self.use_complex_think_head = use_complex_think_head
        self.use_complex_talk_head = use_complex_talk_head
        self.use_weighted_talk_head = use_weighted_talk_head
        self.hidden_dropout_prob = hidden_dropout_prob
#Encoder Decoder - Currently only a single EncoderDecoder is supported -Later will be eXpanded to suport both models 
        if "encoder" not in kwargs or "decoder" not in kwargs:
            raise ValueError(
                f"A configuraton of type {self.model_type} cannot be instantiated because "
                f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}"
            )

        encoder_config = kwargs.pop("encoder")
        encoder_model_type = encoder_config.pop("model_type")
        decoder_config = kwargs.pop("decoder")
        decoder_model_type = decoder_config.pop("model_type")

        self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config)
        self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config)
        self.is_encoder_decoder = True

    @classmethod
    def from_encoder_decoder_configs(
        cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs
    ) -> PretrainedConfig:
        r"""
        Instantiate a [`SpeechEncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model
        configuration and decoder model configuration.

        Returns:
            [`SpeechEncoderDecoderConfig`]: An instance of a configuration object
        """
        logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config")
        decoder_config.is_decoder = True
        decoder_config.add_cross_attention = True

        return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs)
    
    def _rope_scaling_validation(self):
        """
        Validate the `rope_scaling` configuration.
        """
        if self.rope_scaling is None:
            return

        if not isinstance(self.rope_scaling, dict):
            raise ValueError(
                "`rope_scaling` must be a dictionary, "
                f"got {self.rope_scaling}"
            )
        rope_scaling_type = self.rope_scaling.get("type", None)
        rope_scaling_factor = self.rope_scaling.get("factor", None)
        if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "yarn", "dynamic-yarn"]:
            raise ValueError(
                f"`rope_scaling`'s name field must be one of ['linear', 'dynamic', 'yarn', 'dynamic-yarn'], got {rope_scaling_type}"
            )
        if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
            raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
        if rope_scaling_type == "yarn" or rope_scaling_type == "dynamic-yarn":
            original_max_position_embeddings = self.rope_scaling.get("original_max_position_embeddings", None)
            if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int):
                raise ValueError(f"`rope_scaling.original_max_position_embeddings` must be set to an int when using yarn, and dynamic-yarn")