File size: 2,871 Bytes
a638e43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
from utils.basic_utils import load_jsonl, save_jsonl, load_json
import pandas as pd
from tqdm import tqdm
import numpy as np
from collections import defaultdict
import copy
def calculate_iou(pred_start: float, pred_end: float, gt_start: float, gt_end: float) -> float:
intersection_start = max(pred_start, gt_start)
intersection_end = min(pred_end, gt_end)
intersection = max(0, intersection_end - intersection_start)
union = (pred_end - pred_start) + (gt_end - gt_start) - intersection
return intersection / union if union > 0 else 0
# Function to calculate DCG
def calculate_dcg(scores):
return sum((2**score - 1) / np.log2(idx + 2) for idx, score in enumerate(scores))
# Function to calculate NDCG
def calculate_ndcg(pred_scores, true_scores):
dcg = calculate_dcg(pred_scores)
idcg = calculate_dcg(sorted(true_scores, reverse=True))
return dcg / idcg if idcg > 0 else 0
def calculate_ndcg_iou(all_gt, all_pred, TS, KS):
performance = defaultdict(lambda: defaultdict(list))
performance_avg = defaultdict(lambda: defaultdict(float))
for k in tqdm(all_pred.keys(), desc="Calculate NDCG"):
one_pred = all_pred[k]
one_gt = all_gt[k]
one_gt.sort(key=lambda x: x["relevance"], reverse=True)
for T in TS:
one_gt_drop = copy.deepcopy(one_gt)
predictions_with_scores = []
for pred in one_pred:
pred_video_name, pred_time = pred["video_name"], pred["timestamp"]
matched_rows = [gt for gt in one_gt_drop if gt["video_name"] == pred_video_name]
if not matched_rows:
pred["pred_relevance"] = 0
else:
ious = [calculate_iou(pred_time[0], pred_time[1], gt["timestamp"][0], gt["timestamp"][1]) for gt in matched_rows]
max_iou_idx = np.argmax(ious)
max_iou_row = matched_rows[max_iou_idx]
if ious[max_iou_idx] > T:
pred["pred_relevance"] = max_iou_row["relevance"]
# Remove the matched ground truth row
original_idx = one_gt_drop.index(max_iou_row)
one_gt_drop.pop(original_idx)
else:
pred["pred_relevance"] = 0
predictions_with_scores.append(pred)
for K in KS:
true_scores = [gt["relevance"] for gt in one_gt][:K]
pred_scores = [pred["pred_relevance"] for pred in predictions_with_scores][:K]
ndcg_score = calculate_ndcg(pred_scores, true_scores)
performance[K][T].append(ndcg_score)
for K, vs in performance.items():
for T, v in vs.items():
performance_avg[K][T] = np.mean(v)
return performance_avg
|