File size: 9,176 Bytes
a638e43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import os
import time
import json
import pprint
import random
import numpy as np
from tqdm import tqdm, trange
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from config.config import BaseOptions
from model.conquer import CONQUER
from data_loader.second_stage_start_end_dataset import StartEndDataset
from inference import eval_epoch
from optim.adamw import AdamW
from utils.basic_utils import TimeTracker, load_config, save_json, get_logger
from utils.model_utils import count_parameters, move_cuda, start_end_collate
def set_seed(seed, use_cuda=True):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if use_cuda:
torch.cuda.manual_seed_all(seed)
def rm_key_from_odict(odict_obj, rm_suffix):
"""remove key entry from the OrderedDict"""
return OrderedDict([(k, v) for k, v in odict_obj.items() if rm_suffix not in k])
def build_optimizer(model, opts):
# Prepare optimizer
param_optimizer = [(n, p) for n, p in model.named_parameters()
if (n.startswith('encoder') or n.startswith('query_weight')) and p.requires_grad ]
param_top = [(n, p) for n, p in model.named_parameters()
if ( not n.startswith('encoder') and not n.startswith('query_weight')) and p.requires_grad]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_top
if not any(nd in n for nd in no_decay)],
'weight_decay': opts.wd},
{'params': [p for n, p in param_top
if any(nd in n for nd in no_decay)],
'weight_decay': 0.0},
{'params': [p for n, p in param_optimizer
if not any(nd in n for nd in no_decay)],
'lr': opts.lr_mul * opts.lr,
'weight_decay': opts.wd},
{'params': [p for n, p in param_optimizer
if any(nd in n for nd in no_decay)],
'lr': opts.lr_mul * opts.lr,
'weight_decay': 0.0}
]
# currently Adam only
optimizer = AdamW(optimizer_grouped_parameters,
lr=opts.lr)
return optimizer
def train(model, train_data, val_data, test_data, opt, logger):
# Prepare optimizer
if opt.device.type == "cuda":
model.to(opt.device)
logger.info("CUDA enabled.")
assert len(opt.device_ids) == 1
train_loader = DataLoader(train_data,
collate_fn=start_end_collate,
batch_size=opt.bsz,
num_workers=opt.num_workers,
shuffle=True,
pin_memory=True,
drop_last=True)
# Prepare optimizer
optimizer = build_optimizer(model, opt)
thresholds = [0.3, 0.5, 0.7]
topks = [10, 20, 40]
best_val_ndcg = 0
eval_step = len(train_loader) // opt.eval_num_per_epoch
time_tracker = TimeTracker()
for epoch_i in range(0, opt.n_epoch):
print(f"TRAIN EPOCH: {epoch_i}|{opt.n_epoch}")
num_training_examples = len(train_loader)
time_tracker.start("grab_data")
for batch_idx, batch in tqdm(enumerate(train_loader), desc=f"Training {epoch_i}|{opt.n_epoch}", total=num_training_examples):
global_step = epoch_i * num_training_examples + batch_idx
time_tracker.stop("grab_data")
time_tracker.start("to_device")
model.train()
model_inputs = move_cuda(batch["model_inputs"], opt.device)
time_tracker.stop("to_device")
time_tracker.start("forward")
optimizer.zero_grad()
loss, loss_dict = model(model_inputs)
time_tracker.stop("forward")
time_tracker.start("backward")
loss.backward()
if opt.grad_clip != -1:
nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
optimizer.step()
time_tracker.stop("backward")
time_tracker.start("grab_data")
if global_step % 10 == 0:
print(time_tracker.report())
time_tracker.reset_all()
for i in range(torch.cuda.device_count()):
print(f"Memory Allocated on GPU {i}: {torch.cuda.memory_allocated(i) / 1024**3:.2f} GB")
print(f"Memory Cached on GPU {i}: {torch.cuda.memory_reserved(i) / 1024**3:.2f} GB")
print("-------------------------")
###### ------------------- #############
### eval during training
if global_step % eval_step == 0 and global_step != 0:
model.eval()
val_performance, val_predictions = eval_epoch(model, val_data, opt, max_after_nms=40, iou_thds=thresholds, topks=topks)
test_performance, test_predictions = eval_epoch(model, test_data, opt, max_after_nms=40, iou_thds=thresholds, topks=topks)
logger.info(f"EPOCH: {epoch_i}")
line1 = ""
line2 = "VAL: "
line3 = "TEST: "
for K, vs in val_performance.items():
for T, v in vs.items():
line1 += f"NDCG@{K}, IoU={T}\t"
line2 += f" {v:.6f}"
for K, vs in test_performance.items():
for T, v in vs.items():
line3 += f" {v:.6f}"
logger.info(line1)
logger.info(line2)
logger.info(line3)
anchor_ndcg = val_performance[20][0.5]
if anchor_ndcg > best_val_ndcg:
print("~"*40)
save_json(val_predictions, os.path.join(opt.results_dir, "best_val_predictions.json"))
save_json(test_predictions, os.path.join(opt.results_dir, "best_test_predictions.json"))
best_val_ndcg = anchor_ndcg
logger.info("BEST " + line2)
logger.info("BEST " + line3)
checkpoint = {"model": model.state_dict(), "model_cfg": model.config, "epoch": epoch_i}
torch.save(checkpoint, opt.ckpt_filepath)
logger.info("save checkpoint: {}".format(opt.ckpt_filepath))
print("~"*40)
logger.info("")
def start_training():
opt = BaseOptions().parse()
logger = get_logger(opt.results_dir, opt.model_name +"_"+ opt.exp_id)
set_seed(opt.seed)
opt.train_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str}\n"
opt.eval_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Metrics] {eval_metrics_str}\n"
data_config = load_config(opt.dataset_config)
train_dataset = StartEndDataset(
config=data_config,
data_path = data_config.train_data_path,
vr_rank_path = data_config.train_first_VR_ranklist_path,
mode="train",
data_ratio=opt.data_ratio,
neg_video_num=opt.neg_video_num,
use_extend_pool=opt.use_extend_pool,
)
val_dataset = StartEndDataset(
config = data_config,
data_path = data_config.val_data_path,
vr_rank_path = data_config.val_first_VR_ranklist_path_hero,
mode="val",
max_ctx_len=opt.max_ctx_len,
max_desc_len=opt.max_desc_len,
clip_length=opt.clip_length,
ctx_mode = opt.ctx_mode,
data_ratio = opt.data_ratio,
is_eval = True,
inference_top_k = opt.max_vcmr_video,
)
test_dataset = StartEndDataset(
config = data_config,
data_path = data_config.test_data_path,
vr_rank_path = data_config.test_first_VR_ranklist_path_hero,
mode="val",
max_ctx_len=opt.max_ctx_len,
max_desc_len=opt.max_desc_len,
clip_length=opt.clip_length,
ctx_mode = opt.ctx_mode,
data_ratio = opt.data_ratio,
is_eval = True,
inference_top_k = opt.max_vcmr_video,
)
model_config = load_config(opt.model_config)
logger.info("model_config {}".format(pprint.pformat(model_config,indent=4)))
model = CONQUER(
model_config,
visual_dim = opt.visual_dim,
text_dim =opt.text_dim,
query_dim = opt.query_dim,
hidden_dim = opt.hidden_dim,
video_len= opt.max_ctx_len,
ctx_mode = opt.ctx_mode,
lw_video_ce = opt.lw_video_ce, # video cross-entropy loss weight
lw_st_ed = opt.lw_st_ed, # moment cross-entropy loss weight
similarity_measure=opt.similarity_measure,
use_debug = opt.debug,
no_output_moe_weight = opt.no_output_moe_weight)
count_parameters(model)
logger.info("Start Training...")
train(model, train_dataset, val_dataset, test_dataset, opt, logger)
if __name__ == '__main__':
start_training()
|