|
""" |
|
AdamW optimizer (weight decay fix) |
|
originally from hugginface (https://github.com/huggingface/transformers). |
|
|
|
Copied from UNITER |
|
(https://github.com/ChenRocks/UNITER) |
|
""" |
|
import math |
|
|
|
import torch |
|
from torch.optim import Optimizer |
|
|
|
|
|
class AdamW(Optimizer): |
|
""" Implements Adam algorithm with weight decay fix. |
|
Parameters: |
|
lr (float): learning rate. Default 1e-3. |
|
betas (tuple of 2 floats): Adams beta parameters (b1, b2). |
|
Default: (0.9, 0.999) |
|
eps (float): Adams epsilon. Default: 1e-6 |
|
weight_decay (float): Weight decay. Default: 0.0 |
|
correct_bias (bool): can be set to False to avoid correcting bias |
|
in Adam (e.g. like in Bert TF repository). Default True. |
|
""" |
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6, |
|
weight_decay=0.0, correct_bias=True): |
|
if lr < 0.0: |
|
raise ValueError( |
|
"Invalid learning rate: {} - should be >= 0.0".format(lr)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter: {} - " |
|
"should be in [0.0, 1.0[".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter: {} - " |
|
"should be in [0.0, 1.0[".format(betas[1])) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {} - " |
|
"should be >= 0.0".format(eps)) |
|
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, |
|
correct_bias=correct_bias) |
|
super(AdamW, self).__init__(params, defaults) |
|
|
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad.data |
|
if grad.is_sparse: |
|
raise RuntimeError( |
|
'Adam does not support sparse ' |
|
'gradients, please consider SparseAdam instead') |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state['step'] = 0 |
|
|
|
state['exp_avg'] = torch.zeros_like(p.data) |
|
|
|
state['exp_avg_sq'] = torch.zeros_like(p.data) |
|
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
|
beta1, beta2 = group['betas'] |
|
|
|
state['step'] += 1 |
|
|
|
|
|
|
|
exp_avg.mul_(beta1).add_(grad , alpha=1.0 - beta1) |
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1.0 - beta2) |
|
denom = exp_avg_sq.sqrt().add_(group['eps']) |
|
|
|
step_size = group['lr'] |
|
if group['correct_bias']: |
|
bias_correction1 = 1.0 - beta1 ** state['step'] |
|
bias_correction2 = 1.0 - beta2 ** state['step'] |
|
step_size = (step_size * math.sqrt(bias_correction2) |
|
/ bias_correction1) |
|
|
|
p.data.addcdiv_(exp_avg, denom, value=-step_size) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if group['weight_decay'] > 0.0: |
|
p.data.add_(p.data, alpha=-group['lr'] * group['weight_decay']) |
|
|
|
return loss |
|
|