update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: distilbert-base-uncased-finetuned-ner-TRANS
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# distilbert-base-uncased-finetuned-ner-TRANS
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1053
|
23 |
+
- Precision: 0.7911
|
24 |
+
- Recall: 0.8114
|
25 |
+
- F1: 0.8011
|
26 |
+
- Accuracy: 0.9815
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 12
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.077 | 1.0 | 3762 | 0.0724 | 0.7096 | 0.7472 | 0.7279 | 0.9741 |
|
58 |
+
| 0.0538 | 2.0 | 7524 | 0.0652 | 0.7308 | 0.7687 | 0.7493 | 0.9766 |
|
59 |
+
| 0.0412 | 3.0 | 11286 | 0.0643 | 0.7672 | 0.7875 | 0.7772 | 0.9788 |
|
60 |
+
| 0.0315 | 4.0 | 15048 | 0.0735 | 0.7646 | 0.7966 | 0.7803 | 0.9793 |
|
61 |
+
| 0.0249 | 5.0 | 18810 | 0.0772 | 0.7805 | 0.7981 | 0.7892 | 0.9801 |
|
62 |
+
| 0.0213 | 6.0 | 22572 | 0.0783 | 0.7829 | 0.8063 | 0.7944 | 0.9805 |
|
63 |
+
| 0.0187 | 7.0 | 26334 | 0.0858 | 0.7821 | 0.8010 | 0.7914 | 0.9809 |
|
64 |
+
| 0.0157 | 8.0 | 30096 | 0.0860 | 0.7837 | 0.8120 | 0.7976 | 0.9812 |
|
65 |
+
| 0.0122 | 9.0 | 33858 | 0.0963 | 0.7857 | 0.8129 | 0.7990 | 0.9813 |
|
66 |
+
| 0.0107 | 10.0 | 37620 | 0.0993 | 0.7934 | 0.8089 | 0.8010 | 0.9812 |
|
67 |
+
| 0.0091 | 11.0 | 41382 | 0.1031 | 0.7882 | 0.8123 | 0.8001 | 0.9814 |
|
68 |
+
| 0.0083 | 12.0 | 45144 | 0.1053 | 0.7911 | 0.8114 | 0.8011 | 0.9815 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.15.0
|
74 |
+
- Pytorch 1.10.1
|
75 |
+
- Datasets 2.0.0
|
76 |
+
- Tokenizers 0.10.3
|