update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,11 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
- generated_from_trainer
|
|
|
|
|
|
|
|
|
|
|
4 |
model-index:
|
5 |
- name: distilbert-base-uncased-ner-invoiceSenderRecipient-all-inv-26-12
|
6 |
results: []
|
@@ -12,6 +17,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
12 |
# distilbert-base-uncased-ner-invoiceSenderRecipient-all-inv-26-12
|
13 |
|
14 |
This model was trained from scratch on the None dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
## Model description
|
17 |
|
@@ -38,6 +49,29 @@ The following hyperparameters were used during training:
|
|
38 |
- lr_scheduler_type: linear
|
39 |
- num_epochs: 1
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
### Framework versions
|
42 |
|
43 |
- Transformers 4.15.0
|
|
|
1 |
---
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- precision
|
6 |
+
- recall
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
model-index:
|
10 |
- name: distilbert-base-uncased-ner-invoiceSenderRecipient-all-inv-26-12
|
11 |
results: []
|
|
|
17 |
# distilbert-base-uncased-ner-invoiceSenderRecipient-all-inv-26-12
|
18 |
|
19 |
This model was trained from scratch on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.0253
|
22 |
+
- Precision: 0.8377
|
23 |
+
- Recall: 0.8893
|
24 |
+
- F1: 0.8627
|
25 |
+
- Accuracy: 0.9911
|
26 |
|
27 |
## Model description
|
28 |
|
|
|
49 |
- lr_scheduler_type: linear
|
50 |
- num_epochs: 1
|
51 |
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
56 |
+
| 0.0301 | 0.06 | 500 | 0.0312 | 0.8199 | 0.8282 | 0.8240 | 0.9892 |
|
57 |
+
| 0.0279 | 0.11 | 1000 | 0.0307 | 0.8106 | 0.8602 | 0.8347 | 0.9894 |
|
58 |
+
| 0.0253 | 0.17 | 1500 | 0.0317 | 0.8272 | 0.8282 | 0.8277 | 0.9890 |
|
59 |
+
| 0.025 | 0.23 | 2000 | 0.0311 | 0.8056 | 0.8699 | 0.8365 | 0.9894 |
|
60 |
+
| 0.0249 | 0.28 | 2500 | 0.0327 | 0.7927 | 0.8798 | 0.8340 | 0.9888 |
|
61 |
+
| 0.0234 | 0.34 | 3000 | 0.0306 | 0.7948 | 0.8862 | 0.8380 | 0.9894 |
|
62 |
+
| 0.0232 | 0.4 | 3500 | 0.0305 | 0.8172 | 0.8803 | 0.8476 | 0.9900 |
|
63 |
+
| 0.0235 | 0.46 | 4000 | 0.0295 | 0.8289 | 0.8666 | 0.8473 | 0.9902 |
|
64 |
+
| 0.0232 | 0.51 | 4500 | 0.0291 | 0.8048 | 0.8866 | 0.8437 | 0.9899 |
|
65 |
+
| 0.0228 | 0.57 | 5000 | 0.0289 | 0.8234 | 0.8839 | 0.8525 | 0.9904 |
|
66 |
+
| 0.0246 | 0.63 | 5500 | 0.0292 | 0.8129 | 0.8921 | 0.8506 | 0.9901 |
|
67 |
+
| 0.024 | 0.68 | 6000 | 0.0271 | 0.8199 | 0.8908 | 0.8538 | 0.9905 |
|
68 |
+
| 0.0285 | 0.74 | 6500 | 0.0267 | 0.8262 | 0.8913 | 0.8575 | 0.9906 |
|
69 |
+
| 0.0275 | 0.8 | 7000 | 0.0260 | 0.8325 | 0.8887 | 0.8597 | 0.9909 |
|
70 |
+
| 0.0274 | 0.85 | 7500 | 0.0261 | 0.8311 | 0.8924 | 0.8607 | 0.9909 |
|
71 |
+
| 0.0262 | 0.91 | 8000 | 0.0254 | 0.8359 | 0.8906 | 0.8624 | 0.9910 |
|
72 |
+
| 0.027 | 0.97 | 8500 | 0.0253 | 0.8377 | 0.8893 | 0.8627 | 0.9911 |
|
73 |
+
|
74 |
+
|
75 |
### Framework versions
|
76 |
|
77 |
- Transformers 4.15.0
|