--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-ner-invoiceSenderRecipient-all-inv-26-12 results: [] --- # distilbert-base-uncased-ner-invoiceSenderRecipient-all-inv-26-12 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0240 - Precision: 0.8517 - Recall: 0.9006 - F1: 0.8755 - Accuracy: 0.9918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0302 | 0.06 | 500 | 0.0312 | 0.8199 | 0.8274 | 0.8236 | 0.9892 | | 0.028 | 0.11 | 1000 | 0.0308 | 0.8108 | 0.8591 | 0.8343 | 0.9894 | | 0.0255 | 0.17 | 1500 | 0.0319 | 0.8278 | 0.8226 | 0.8252 | 0.9890 | | 0.0253 | 0.23 | 2000 | 0.0314 | 0.8046 | 0.8674 | 0.8348 | 0.9893 | | 0.0253 | 0.28 | 2500 | 0.0329 | 0.7914 | 0.8783 | 0.8326 | 0.9887 | | 0.0239 | 0.34 | 3000 | 0.0309 | 0.7907 | 0.8871 | 0.8361 | 0.9893 | | 0.0238 | 0.4 | 3500 | 0.0313 | 0.8109 | 0.8822 | 0.8450 | 0.9898 | | 0.0242 | 0.46 | 4000 | 0.0292 | 0.8290 | 0.8646 | 0.8464 | 0.9902 | | 0.0239 | 0.51 | 4500 | 0.0302 | 0.7938 | 0.8859 | 0.8373 | 0.9895 | | 0.0237 | 0.57 | 5000 | 0.0291 | 0.8246 | 0.8795 | 0.8512 | 0.9903 | | 0.0254 | 0.63 | 5500 | 0.0296 | 0.8160 | 0.8884 | 0.8507 | 0.9901 | | 0.0248 | 0.68 | 6000 | 0.0270 | 0.8269 | 0.8845 | 0.8547 | 0.9906 | | 0.029 | 0.74 | 6500 | 0.0271 | 0.8283 | 0.8874 | 0.8568 | 0.9906 | | 0.0277 | 0.8 | 7000 | 0.0259 | 0.8374 | 0.8823 | 0.8593 | 0.9909 | | 0.0276 | 0.85 | 7500 | 0.0264 | 0.8317 | 0.8930 | 0.8612 | 0.9909 | | 0.0263 | 0.91 | 8000 | 0.0252 | 0.8412 | 0.8901 | 0.8650 | 0.9911 | | 0.0271 | 0.97 | 8500 | 0.0247 | 0.8531 | 0.8756 | 0.8642 | 0.9913 | | 0.0242 | 1.02 | 9000 | 0.0256 | 0.8459 | 0.8909 | 0.8678 | 0.9913 | | 0.022 | 1.08 | 9500 | 0.0262 | 0.8310 | 0.9000 | 0.8641 | 0.9910 | | 0.0212 | 1.14 | 10000 | 0.0251 | 0.8581 | 0.8780 | 0.8679 | 0.9914 | | 0.0215 | 1.19 | 10500 | 0.0255 | 0.8441 | 0.8952 | 0.8689 | 0.9914 | | 0.0209 | 1.25 | 11000 | 0.0253 | 0.8378 | 0.8982 | 0.8669 | 0.9913 | | 0.021 | 1.31 | 11500 | 0.0253 | 0.8358 | 0.9049 | 0.8690 | 0.9913 | | 0.0211 | 1.37 | 12000 | 0.0252 | 0.8437 | 0.8989 | 0.8704 | 0.9915 | | 0.0205 | 1.42 | 12500 | 0.0249 | 0.8464 | 0.8980 | 0.8714 | 0.9916 | | 0.0206 | 1.48 | 13000 | 0.0247 | 0.8440 | 0.8973 | 0.8698 | 0.9916 | | 0.02 | 1.54 | 13500 | 0.0246 | 0.8528 | 0.8939 | 0.8729 | 0.9916 | | 0.0208 | 1.59 | 14000 | 0.0249 | 0.8397 | 0.9063 | 0.8718 | 0.9915 | | 0.0205 | 1.65 | 14500 | 0.0241 | 0.8549 | 0.8932 | 0.8736 | 0.9917 | | 0.0204 | 1.71 | 15000 | 0.0241 | 0.8534 | 0.8976 | 0.8749 | 0.9918 | | 0.0196 | 1.76 | 15500 | 0.0246 | 0.8464 | 0.9038 | 0.8741 | 0.9917 | | 0.0202 | 1.82 | 16000 | 0.0239 | 0.8514 | 0.8990 | 0.8746 | 0.9918 | | 0.0197 | 1.88 | 16500 | 0.0242 | 0.8494 | 0.9008 | 0.8744 | 0.9917 | | 0.0198 | 1.93 | 17000 | 0.0240 | 0.8514 | 0.9005 | 0.8752 | 0.9918 | | 0.0202 | 1.99 | 17500 | 0.0240 | 0.8517 | 0.9007 | 0.8755 | 0.9918 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0 - Datasets 2.3.2 - Tokenizers 0.10.3