update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,11 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
- generated_from_trainer
|
|
|
|
|
|
|
|
|
|
|
4 |
model-index:
|
5 |
- name: gpt2-ner-invoiceSenderRecipient_all_inv_03_01
|
6 |
results: []
|
@@ -11,17 +16,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
11 |
|
12 |
# gpt2-ner-invoiceSenderRecipient_all_inv_03_01
|
13 |
|
14 |
-
This model was trained from scratch on
|
15 |
It achieves the following results on the evaluation set:
|
16 |
-
-
|
17 |
-
-
|
18 |
-
-
|
19 |
-
-
|
20 |
-
-
|
21 |
-
- eval_runtime: 984.499
|
22 |
-
- eval_samples_per_second: 28.965
|
23 |
-
- eval_steps_per_second: 7.241
|
24 |
-
- step: 0
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -49,9 +50,94 @@ The following hyperparameters were used during training:
|
|
49 |
- num_epochs: 1
|
50 |
- mixed_precision_training: Native AMP
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
### Framework versions
|
53 |
|
54 |
- Transformers 4.22.0
|
55 |
- Pytorch 1.10.0
|
56 |
-
- Datasets 2.3.2
|
57 |
- Tokenizers 0.12.1
|
|
|
1 |
---
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- precision
|
6 |
+
- recall
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
model-index:
|
10 |
- name: gpt2-ner-invoiceSenderRecipient_all_inv_03_01
|
11 |
results: []
|
|
|
16 |
|
17 |
# gpt2-ner-invoiceSenderRecipient_all_inv_03_01
|
18 |
|
19 |
+
This model was trained from scratch on an unknown dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.0307
|
22 |
+
- Precision: 0.7932
|
23 |
+
- Recall: 0.8488
|
24 |
+
- F1: 0.8201
|
25 |
+
- Accuracy: 0.9895
|
|
|
|
|
|
|
|
|
26 |
|
27 |
## Model description
|
28 |
|
|
|
50 |
- num_epochs: 1
|
51 |
- mixed_precision_training: Native AMP
|
52 |
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.0363 | 0.01 | 500 | 0.0338 | 0.7846 | 0.7969 | 0.7907 | 0.9884 |
|
58 |
+
| 0.0392 | 0.02 | 1000 | 0.0346 | 0.7665 | 0.8211 | 0.7929 | 0.9881 |
|
59 |
+
| 0.0363 | 0.04 | 1500 | 0.0347 | 0.7701 | 0.8075 | 0.7884 | 0.9880 |
|
60 |
+
| 0.0396 | 0.05 | 2000 | 0.0347 | 0.7454 | 0.8375 | 0.7888 | 0.9879 |
|
61 |
+
| 0.0366 | 0.06 | 2500 | 0.0350 | 0.7519 | 0.8345 | 0.7911 | 0.9879 |
|
62 |
+
| 0.0382 | 0.07 | 3000 | 0.0356 | 0.7500 | 0.8434 | 0.7939 | 0.9877 |
|
63 |
+
| 0.0424 | 0.09 | 3500 | 0.0358 | 0.7517 | 0.8287 | 0.7883 | 0.9877 |
|
64 |
+
| 0.0385 | 0.1 | 4000 | 0.0352 | 0.7605 | 0.8225 | 0.7903 | 0.9880 |
|
65 |
+
| 0.0382 | 0.11 | 4500 | 0.0361 | 0.7494 | 0.8159 | 0.7813 | 0.9874 |
|
66 |
+
| 0.0372 | 0.12 | 5000 | 0.0345 | 0.7817 | 0.8044 | 0.7929 | 0.9885 |
|
67 |
+
| 0.0377 | 0.14 | 5500 | 0.0346 | 0.7749 | 0.8238 | 0.7986 | 0.9884 |
|
68 |
+
| 0.0383 | 0.15 | 6000 | 0.0359 | 0.7568 | 0.8341 | 0.7936 | 0.9879 |
|
69 |
+
| 0.0372 | 0.16 | 6500 | 0.0356 | 0.7548 | 0.8356 | 0.7932 | 0.9879 |
|
70 |
+
| 0.0371 | 0.17 | 7000 | 0.0352 | 0.7540 | 0.8477 | 0.7981 | 0.9880 |
|
71 |
+
| 0.0368 | 0.19 | 7500 | 0.0349 | 0.7662 | 0.8310 | 0.7973 | 0.9881 |
|
72 |
+
| 0.0388 | 0.2 | 8000 | 0.0339 | 0.7648 | 0.8336 | 0.7977 | 0.9883 |
|
73 |
+
| 0.0368 | 0.21 | 8500 | 0.0336 | 0.7729 | 0.8305 | 0.8006 | 0.9886 |
|
74 |
+
| 0.0389 | 0.22 | 9000 | 0.0340 | 0.7750 | 0.8208 | 0.7972 | 0.9884 |
|
75 |
+
| 0.0384 | 0.24 | 9500 | 0.0349 | 0.7549 | 0.8499 | 0.7996 | 0.9880 |
|
76 |
+
| 0.0376 | 0.25 | 10000 | 0.0358 | 0.7531 | 0.8390 | 0.7938 | 0.9875 |
|
77 |
+
| 0.0354 | 0.26 | 10500 | 0.0346 | 0.7650 | 0.8318 | 0.7970 | 0.9882 |
|
78 |
+
| 0.0358 | 0.27 | 11000 | 0.0338 | 0.7694 | 0.8397 | 0.8030 | 0.9886 |
|
79 |
+
| 0.0389 | 0.28 | 11500 | 0.0341 | 0.7586 | 0.8502 | 0.8018 | 0.9882 |
|
80 |
+
| 0.0383 | 0.3 | 12000 | 0.0342 | 0.7688 | 0.8275 | 0.7971 | 0.9881 |
|
81 |
+
| 0.0355 | 0.31 | 12500 | 0.0337 | 0.7783 | 0.8281 | 0.8024 | 0.9885 |
|
82 |
+
| 0.0372 | 0.32 | 13000 | 0.0338 | 0.7703 | 0.8399 | 0.8036 | 0.9884 |
|
83 |
+
| 0.0369 | 0.33 | 13500 | 0.0331 | 0.7683 | 0.8427 | 0.8038 | 0.9886 |
|
84 |
+
| 0.0361 | 0.35 | 14000 | 0.0336 | 0.7699 | 0.8322 | 0.7999 | 0.9885 |
|
85 |
+
| 0.0361 | 0.36 | 14500 | 0.0336 | 0.7735 | 0.8390 | 0.8049 | 0.9885 |
|
86 |
+
| 0.0372 | 0.37 | 15000 | 0.0333 | 0.7747 | 0.8343 | 0.8034 | 0.9887 |
|
87 |
+
| 0.0366 | 0.38 | 15500 | 0.0343 | 0.7646 | 0.8468 | 0.8036 | 0.9883 |
|
88 |
+
| 0.0345 | 0.4 | 16000 | 0.0333 | 0.7790 | 0.8334 | 0.8053 | 0.9887 |
|
89 |
+
| 0.0363 | 0.41 | 16500 | 0.0329 | 0.7783 | 0.8301 | 0.8034 | 0.9887 |
|
90 |
+
| 0.0348 | 0.42 | 17000 | 0.0341 | 0.7626 | 0.8533 | 0.8054 | 0.9884 |
|
91 |
+
| 0.0391 | 0.43 | 17500 | 0.0324 | 0.7873 | 0.8295 | 0.8079 | 0.9889 |
|
92 |
+
| 0.0344 | 0.45 | 18000 | 0.0334 | 0.7769 | 0.8369 | 0.8058 | 0.9887 |
|
93 |
+
| 0.0378 | 0.46 | 18500 | 0.0337 | 0.7741 | 0.8394 | 0.8054 | 0.9886 |
|
94 |
+
| 0.035 | 0.47 | 19000 | 0.0328 | 0.7827 | 0.8323 | 0.8067 | 0.9888 |
|
95 |
+
| 0.0351 | 0.48 | 19500 | 0.0327 | 0.7815 | 0.8371 | 0.8083 | 0.9889 |
|
96 |
+
| 0.037 | 0.5 | 20000 | 0.0328 | 0.7793 | 0.8388 | 0.8079 | 0.9888 |
|
97 |
+
| 0.0346 | 0.51 | 20500 | 0.0325 | 0.7804 | 0.8416 | 0.8099 | 0.9890 |
|
98 |
+
| 0.0364 | 0.52 | 21000 | 0.0323 | 0.7861 | 0.8339 | 0.8093 | 0.9889 |
|
99 |
+
| 0.0356 | 0.53 | 21500 | 0.0327 | 0.7729 | 0.8510 | 0.8101 | 0.9889 |
|
100 |
+
| 0.0346 | 0.54 | 22000 | 0.0325 | 0.7791 | 0.8407 | 0.8087 | 0.9889 |
|
101 |
+
| 0.0342 | 0.56 | 22500 | 0.0334 | 0.7790 | 0.8443 | 0.8104 | 0.9889 |
|
102 |
+
| 0.0368 | 0.57 | 23000 | 0.0322 | 0.7869 | 0.8323 | 0.8089 | 0.9890 |
|
103 |
+
| 0.0371 | 0.58 | 23500 | 0.0320 | 0.7890 | 0.8356 | 0.8116 | 0.9891 |
|
104 |
+
| 0.0344 | 0.59 | 24000 | 0.0321 | 0.7910 | 0.8321 | 0.8110 | 0.9892 |
|
105 |
+
| 0.0342 | 0.61 | 24500 | 0.0319 | 0.7881 | 0.8356 | 0.8111 | 0.9892 |
|
106 |
+
| 0.0339 | 0.62 | 25000 | 0.0320 | 0.7889 | 0.8317 | 0.8097 | 0.9892 |
|
107 |
+
| 0.0347 | 0.63 | 25500 | 0.0316 | 0.7909 | 0.8347 | 0.8122 | 0.9892 |
|
108 |
+
| 0.034 | 0.64 | 26000 | 0.0318 | 0.7887 | 0.8324 | 0.8100 | 0.9891 |
|
109 |
+
| 0.0347 | 0.66 | 26500 | 0.0317 | 0.7791 | 0.8525 | 0.8141 | 0.9891 |
|
110 |
+
| 0.0345 | 0.67 | 27000 | 0.0318 | 0.7870 | 0.8384 | 0.8119 | 0.9892 |
|
111 |
+
| 0.0347 | 0.68 | 27500 | 0.0317 | 0.7903 | 0.8426 | 0.8157 | 0.9893 |
|
112 |
+
| 0.0371 | 0.69 | 28000 | 0.0311 | 0.7965 | 0.8332 | 0.8144 | 0.9894 |
|
113 |
+
| 0.0338 | 0.71 | 28500 | 0.0316 | 0.7863 | 0.8442 | 0.8142 | 0.9892 |
|
114 |
+
| 0.0352 | 0.72 | 29000 | 0.0315 | 0.7810 | 0.8537 | 0.8157 | 0.9892 |
|
115 |
+
| 0.0344 | 0.73 | 29500 | 0.0314 | 0.7953 | 0.8353 | 0.8148 | 0.9894 |
|
116 |
+
| 0.0322 | 0.74 | 30000 | 0.0320 | 0.7836 | 0.8449 | 0.8131 | 0.9891 |
|
117 |
+
| 0.0355 | 0.76 | 30500 | 0.0312 | 0.7877 | 0.8480 | 0.8167 | 0.9894 |
|
118 |
+
| 0.035 | 0.77 | 31000 | 0.0313 | 0.7864 | 0.8504 | 0.8171 | 0.9893 |
|
119 |
+
| 0.0346 | 0.78 | 31500 | 0.0310 | 0.7931 | 0.8424 | 0.8170 | 0.9895 |
|
120 |
+
| 0.0339 | 0.79 | 32000 | 0.0316 | 0.7857 | 0.8501 | 0.8166 | 0.9893 |
|
121 |
+
| 0.033 | 0.8 | 32500 | 0.0311 | 0.7975 | 0.8406 | 0.8185 | 0.9895 |
|
122 |
+
| 0.0337 | 0.82 | 33000 | 0.0314 | 0.7886 | 0.8457 | 0.8162 | 0.9894 |
|
123 |
+
| 0.0357 | 0.83 | 33500 | 0.0311 | 0.7923 | 0.8437 | 0.8172 | 0.9894 |
|
124 |
+
| 0.0348 | 0.84 | 34000 | 0.0312 | 0.7909 | 0.8490 | 0.8189 | 0.9894 |
|
125 |
+
| 0.0343 | 0.85 | 34500 | 0.0311 | 0.7856 | 0.8528 | 0.8179 | 0.9893 |
|
126 |
+
| 0.0323 | 0.87 | 35000 | 0.0311 | 0.7884 | 0.8505 | 0.8183 | 0.9894 |
|
127 |
+
| 0.0329 | 0.88 | 35500 | 0.0307 | 0.7981 | 0.8399 | 0.8185 | 0.9896 |
|
128 |
+
| 0.0324 | 0.89 | 36000 | 0.0313 | 0.7830 | 0.8576 | 0.8186 | 0.9893 |
|
129 |
+
| 0.0336 | 0.9 | 36500 | 0.0312 | 0.7836 | 0.8566 | 0.8185 | 0.9893 |
|
130 |
+
| 0.0327 | 0.92 | 37000 | 0.0309 | 0.7887 | 0.8501 | 0.8182 | 0.9895 |
|
131 |
+
| 0.0338 | 0.93 | 37500 | 0.0312 | 0.7887 | 0.8514 | 0.8188 | 0.9894 |
|
132 |
+
| 0.0327 | 0.94 | 38000 | 0.0311 | 0.7873 | 0.8534 | 0.8190 | 0.9894 |
|
133 |
+
| 0.0326 | 0.95 | 38500 | 0.0308 | 0.7953 | 0.8459 | 0.8198 | 0.9895 |
|
134 |
+
| 0.0338 | 0.97 | 39000 | 0.0307 | 0.7932 | 0.8488 | 0.8201 | 0.9895 |
|
135 |
+
| 0.0354 | 0.98 | 39500 | 0.0308 | 0.7916 | 0.8502 | 0.8198 | 0.9895 |
|
136 |
+
| 0.0313 | 0.99 | 40000 | 0.0309 | 0.7897 | 0.8523 | 0.8198 | 0.9895 |
|
137 |
+
|
138 |
+
|
139 |
### Framework versions
|
140 |
|
141 |
- Transformers 4.22.0
|
142 |
- Pytorch 1.10.0
|
|
|
143 |
- Tokenizers 0.12.1
|