Update README.md (#2)
Browse files- Update README.md (2267cffa6336e6bcbd0444b4176d5dcbee0e47dc)
Co-authored-by: Mei <Jingbiao@users.noreply.huggingface.co>
README.md
CHANGED
@@ -1,199 +1,73 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
###
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
- **
|
33 |
-
- **
|
34 |
-
- **
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
41 |
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
|
44 |
-
[
|
45 |
|
46 |
-
### Downstream Use
|
47 |
|
48 |
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
|
113 |
-
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
|
116 |
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
|
122 |
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
- **Hardware Type:** [More Information Needed]
|
146 |
-
- **Hours used:** [More Information Needed]
|
147 |
-
- **Cloud Provider:** [More Information Needed]
|
148 |
-
- **Compute Region:** [More Information Needed]
|
149 |
-
- **Carbon Emitted:** [More Information Needed]
|
150 |
-
|
151 |
-
## Technical Specifications [optional]
|
152 |
-
|
153 |
-
### Model Architecture and Objective
|
154 |
-
|
155 |
-
[More Information Needed]
|
156 |
-
|
157 |
-
### Compute Infrastructure
|
158 |
-
|
159 |
-
[More Information Needed]
|
160 |
-
|
161 |
-
#### Hardware
|
162 |
-
|
163 |
-
[More Information Needed]
|
164 |
-
|
165 |
-
#### Software
|
166 |
-
|
167 |
-
[More Information Needed]
|
168 |
-
|
169 |
-
## Citation [optional]
|
170 |
-
|
171 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
172 |
|
173 |
**BibTeX:**
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
184 |
-
|
185 |
-
[More Information Needed]
|
186 |
-
|
187 |
-
## More Information [optional]
|
188 |
-
|
189 |
-
[More Information Needed]
|
190 |
-
|
191 |
-
## Model Card Authors [optional]
|
192 |
-
|
193 |
-
[More Information Needed]
|
194 |
-
|
195 |
-
## Model Card Contact
|
196 |
-
|
197 |
-
[More Information Needed]
|
198 |
-
|
199 |
-
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
language:
|
5 |
+
- en
|
6 |
---
|
7 |
|
8 |
+
# PreFLMR model card
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
### Model Description
|
12 |
|
13 |
+
- **Model type:** PreFLMR is an open-source model for multimodal knowledge retrieval. It is a transformer-based model that uses a combination of text and image inputs to retrieve relevant documents from a large corpus.
|
14 |
+
- **Language(s) (NLP):** English
|
15 |
+
- **License:** MIT License
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
### Paper and resources for more detail
|
18 |
|
19 |
+
- **Blog Post for quick overview:** https://www.jinghong-chen.net/preflmr-sota-open-sourced-multi/
|
20 |
+
- **Paper:** https://arxiv.org/abs/2402.08327
|
21 |
+
- **Gradio Demo:** https://u60544-b8d4-53eaa55d.westx.seetacloud.com:8443/
|
22 |
+
- **Repository:** https://github.com/LinWeizheDragon/FLMR
|
23 |
+
- **Project Page:** https://preflmr.github.io/
|
24 |
|
25 |
## Uses
|
26 |
|
|
|
|
|
27 |
### Direct Use
|
28 |
|
|
|
29 |
|
30 |
+
This model can be used directly to retrieve documents from a large corpus using a combination of text and image input queries. The retrieval useage can be found in the [official implementation](https://github.com/LinWeizheDragon/FLMR).
|
31 |
|
32 |
+
### Downstream Use
|
33 |
|
34 |
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
35 |
|
36 |
+
This model can be used combined with language models to create a retrieval-augmented language model. The useage for Knowledge-based VQA can be found in [RAVQA](https://github.com/linweizhedragon/retrieval-augmented-visual-question-answering)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
## How to Get Started with the Model
|
39 |
|
40 |
+
For details of training, indexing and performing retrieval, please refer to [here](https://github.com/LinWeizheDragon/FLMR).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
## Training datasets
|
43 |
+
The model is pretrained on three types of tasks with a total of nine datasets:
|
44 |
+
1. Image to Text retrieval: WIT, KVQA and CC3M
|
45 |
+
2. Question to Text retrieval: MSMARCO
|
46 |
+
3. Image & Question to Text retrieval: LLaVA, OVEN, OKVQA, Infoseek and E-VQA
|
47 |
|
48 |
+
These datasets were converted to retrieval format. For details on the dataset split and conversion process, please refer to the paper [PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers](https://arxiv.org/abs/2402.08327). We will release the proprocessed datasets soon.
|
49 |
|
|
|
50 |
|
51 |
+
## Evaluation datasets
|
52 |
+
We evaluate our models on WIT, LLaVA, OVEN, KVQA, IGLUE (subset of WIT), Infoseek, E-VQA, OKVQA and MSMARCO.
|
53 |
+
| Model | Vision Encoder | Text Encoder | Checkpoint Name | No. Param. | WIT | LLaVA | OVEN | KVQA | IGLUE | Infoseek | E-VQA | OKVQA | MSMARCO |
|
54 |
+
|---------|----------------|--------------|-------------------------------------------------------------|-------|-------|--------|-------|-------|-------|----------|-------|--------|-------|
|
55 |
+
| PreFLMR | ViT-B | Base-v2 | [LinWeizheDragon/PreFLMR_ViT-B](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-B) | 327M | 41.7 | 67.2 | 46.3 | 28.6 | 57.3 | 48.8 | 67.9 | 66.1 | 79.5 |
|
56 |
+
| PreFLMR | ViT-L | Base-v2 | [LinWeizheDragon/PreFLMR_ViT-L](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L) | 543M | 60.5 | 71.8 | 59.8 | 43.6 | 69.2 | 57.9 | 70.8 | 68.5 | 78.7 |
|
57 |
+
| PreFLMR | ViT-G | Base-v2 | [LinWeizheDragon/PreFLMR_ViT-G](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-G) | 2.1B | 61.5 | 72.4 | 63.4 | 42.1 |71.5 | 59.6 | 73.1 | 68.6 | 78.6 |
|
58 |
|
59 |
+
For the evaluation metrics, WIT uses Recall@10, IGLUE uses Recall@1, and all the rest datasets use Recall@5.
|
60 |
|
|
|
61 |
|
62 |
+
## Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
**BibTeX:**
|
65 |
+
```
|
66 |
+
@article{Lin_Mei_Chen_Byrne_2024,
|
67 |
+
title={PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers},
|
68 |
+
url={http://arxiv.org/abs/2402.08327},
|
69 |
+
number={arXiv:2402.08327},
|
70 |
+
publisher={arXiv},
|
71 |
+
author={Lin, Weizhe and Mei, Jingbiao and Chen, Jinghong and Byrne, Bill},
|
72 |
+
year={2024}}
|
73 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|