Update README.md
Browse files
README.md
CHANGED
@@ -7,197 +7,123 @@ language:
|
|
7 |
pipeline_tag: voice-activity-detection
|
8 |
base_model: facebook/wav2vec2-base
|
9 |
---
|
10 |
-
# Model Card for Model ID
|
11 |
|
12 |
-
|
13 |
|
14 |
-
This
|
15 |
|
16 |
## Model Details
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
- **Developed by:** [More Information Needed]
|
25 |
-
- **Funded by [optional]:** [More Information Needed]
|
26 |
-
- **Shared by [optional]:** [More Information Needed]
|
27 |
-
- **Model type:** [More Information Needed]
|
28 |
-
- **Language(s) (NLP):** [More Information Needed]
|
29 |
-
- **License:** [More Information Needed]
|
30 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
31 |
-
|
32 |
-
### Model Sources [optional]
|
33 |
-
|
34 |
-
<!-- Provide the basic links for the model. -->
|
35 |
-
|
36 |
-
- **Repository:** [More Information Needed]
|
37 |
-
- **Paper [optional]:** [More Information Needed]
|
38 |
-
- **Demo [optional]:** [More Information Needed]
|
39 |
|
40 |
## Uses
|
41 |
|
42 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
43 |
-
|
44 |
### Direct Use
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
[More Information Needed]
|
49 |
-
|
50 |
-
### Downstream Use [optional]
|
51 |
-
|
52 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
53 |
-
|
54 |
-
[More Information Needed]
|
55 |
|
56 |
### Out-of-Scope Use
|
57 |
|
58 |
-
|
59 |
|
60 |
-
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
65 |
|
66 |
-
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
|
70 |
-
|
71 |
|
72 |
-
|
|
|
73 |
|
74 |
## How to Get Started with the Model
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
[
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
- **Hardware Type:** [More Information Needed]
|
152 |
-
- **Hours used:** [More Information Needed]
|
153 |
-
- **Cloud Provider:** [More Information Needed]
|
154 |
-
- **Compute Region:** [More Information Needed]
|
155 |
-
- **Carbon Emitted:** [More Information Needed]
|
156 |
-
|
157 |
-
## Technical Specifications [optional]
|
158 |
-
|
159 |
-
### Model Architecture and Objective
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
### Compute Infrastructure
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Hardware
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
#### Software
|
172 |
-
|
173 |
-
[More Information Needed]
|
174 |
-
|
175 |
-
## Citation [optional]
|
176 |
-
|
177 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
178 |
-
|
179 |
-
**BibTeX:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
**APA:**
|
184 |
-
|
185 |
-
[More Information Needed]
|
186 |
-
|
187 |
-
## Glossary [optional]
|
188 |
-
|
189 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## More Information [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Authors [optional]
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
## Model Card Contact
|
202 |
-
|
203 |
-
[More Information Needed]
|
|
|
7 |
pipeline_tag: voice-activity-detection
|
8 |
base_model: facebook/wav2vec2-base
|
9 |
---
|
|
|
10 |
|
11 |
+
# Model Card for Emotion Classification from Voice
|
12 |
|
13 |
+
This model performs emotion classification from voice data using fine-tuned `Wav2Vec2Model` from Facebook. The model predicts one of seven emotion labels: Angry, Disgust, Fear, Happy, Neutral, Sad, and Surprise.
|
14 |
|
15 |
## Model Details
|
16 |
|
17 |
+
- **Developed by:** [Your Name/Organization]
|
18 |
+
- **Model type:** Fine-tuned Wav2Vec2Model
|
19 |
+
- **Language(s):** English (en), Tamil (ta), French (fr), Malayalam (ml)
|
20 |
+
- **License:** [Choose a license]
|
21 |
+
- **Finetuned from model:** [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base)
|
22 |
|
23 |
+
### Model Sources
|
24 |
|
25 |
+
- **Repository:** [Link to your repository]
|
26 |
+
- **Demo:** [Gradio Demo Link if Available]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
## Uses
|
29 |
|
|
|
|
|
30 |
### Direct Use
|
31 |
|
32 |
+
This model can be directly used for emotion detection in speech audio files, which can have applications in call centers, virtual assistants, and mental health monitoring.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
### Out-of-Scope Use
|
35 |
|
36 |
+
The model is not intended for general speech recognition or other NLP tasks outside emotion classification.
|
37 |
|
38 |
+
## Datasets Used
|
39 |
|
40 |
+
The model has been trained on a combination of the following datasets:
|
|
|
|
|
41 |
|
42 |
+
**CREMA-D:** 7,442 clips of actors speaking with various emotions
|
43 |
+
**Torrento:** Emotional speech in Spanish, captured from various environments
|
44 |
+
**RAVDESS:** 24 professional actors, 7 emotions
|
45 |
+
**Emo-DB:** 535 utterances, covering 7 emotions
|
46 |
|
47 |
+
The combination of these datasets allows the model to generalize across multiple languages and accents.
|
48 |
|
49 |
+
## Bias, Risks, and Limitations
|
50 |
|
51 |
+
- **Bias:** The model might underperform on speech data with accents or languages not present in the training data.
|
52 |
+
- **Limitations:** The model is trained specifically for emotion detection and might not generalize well for other speech tasks.
|
53 |
|
54 |
## How to Get Started with the Model
|
55 |
|
56 |
+
```python
|
57 |
+
import torch
|
58 |
+
import numpy as np
|
59 |
+
from transformers import Wav2Vec2Model
|
60 |
+
from torchaudio.transforms import Resample
|
61 |
+
|
62 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
63 |
+
wav2vec2_model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base", output_hidden_states=True).to(device)
|
64 |
+
|
65 |
+
class FineTunedWav2Vec2Model(torch.nn.Module):
|
66 |
+
def __init__(self, wav2vec2_model, output_size):
|
67 |
+
super(FineTunedWav2Vec2Model, self).__init__()
|
68 |
+
self.wav2vec2 = wav2vec2_model
|
69 |
+
self.fc = torch.nn.Linear(self.wav2vec2.config.hidden_size, output_size)
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
self.wav2vec2 = self.wav2vec2.double()
|
73 |
+
self.fc = self.fc.double()
|
74 |
+
outputs = self.wav2vec2(x.double())
|
75 |
+
out = outputs.hidden_states[-1]
|
76 |
+
out = self.fc(out[:, 0, :])
|
77 |
+
return out
|
78 |
+
|
79 |
+
def preprocess_audio(audio):
|
80 |
+
sample_rate, waveform = audio
|
81 |
+
if isinstance(waveform, np.ndarray):
|
82 |
+
waveform = torch.from_numpy(waveform)
|
83 |
+
if waveform.dim() == 2:
|
84 |
+
waveform = waveform.mean(dim=0)
|
85 |
+
|
86 |
+
# Normalize audio
|
87 |
+
if waveform.dtype != torch.float32:
|
88 |
+
waveform = waveform.float() / torch.iinfo(waveform.dtype).max
|
89 |
+
|
90 |
+
# Resample to 16kHz
|
91 |
+
if sample_rate != 16000:
|
92 |
+
resampler = Resample(orig_freq=sample_rate, new_freq=16000)
|
93 |
+
waveform = resampler(waveform)
|
94 |
+
return waveform
|
95 |
+
|
96 |
+
def predict(audio):
|
97 |
+
model_path = "model.pth" # Path to your fine-tuned model
|
98 |
+
model = FineTunedWav2Vec2Model(wav2vec2_model, 7).to(device)
|
99 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
100 |
+
model.eval()
|
101 |
+
|
102 |
+
waveform = preprocess_audio(audio)
|
103 |
+
waveform = waveform.unsqueeze(0).to(device)
|
104 |
+
|
105 |
+
with torch.no_grad():
|
106 |
+
output = model(waveform)
|
107 |
+
|
108 |
+
predicted_label = torch.argmax(output, dim=1).item()
|
109 |
+
emotion_labels = ["Angry", "Disgust", "Fear", "Happy", "Neutral", "Sad", "Surprise"]
|
110 |
+
return emotion_labels[predicted_label]
|
111 |
+
|
112 |
+
# Example usage
|
113 |
+
audio_data = (sample_rate, waveform) # Replace with your actual audio data
|
114 |
+
emotion = predict(audio_data)
|
115 |
+
print(f"Predicted Emotion: {emotion}")
|
116 |
+
|
117 |
+
## Training Procedure
|
118 |
+
|
119 |
+
Preprocessing: Resampled all audio to 16kHz.
|
120 |
+
Training: Fine-tuned facebook/wav2vec2-base with emotion labels.
|
121 |
+
Hyperparameters: Batch size: 16, Learning rate: 5e-5, Epochs: 5
|
122 |
+
|
123 |
+
##Evaluation
|
124 |
+
Testing Data
|
125 |
+
Evaluation was performed on a held-out test set from the CREMA-D and RAVDESS datasets.
|
126 |
+
|
127 |
+
##Metrics
|
128 |
+
Accuracy: 85%
|
129 |
+
F1-score: 82% (weighted average across all classes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|