Upload 10 files
Browse files- README.md +150 -1
- config.json +88 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +16 -0
- trainer_state.json +241 -0
- vocab.json +0 -0
README.md
CHANGED
@@ -1,3 +1,152 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- text-classification
|
5 |
+
- pytorch
|
6 |
+
- roberta
|
7 |
+
- emotions
|
8 |
+
- multi-class-classification
|
9 |
+
- multi-label-classification
|
10 |
+
datasets:
|
11 |
+
- go_emotions
|
12 |
+
license: mit
|
13 |
+
widget:
|
14 |
+
- text: I am not having a great day.
|
15 |
---
|
16 |
+
|
17 |
+
#### Overview
|
18 |
+
|
19 |
+
Model trained from [roberta-base](https://huggingface.co/roberta-base) on the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset for multi-label classification.
|
20 |
+
|
21 |
+
##### ONNX version also available
|
22 |
+
|
23 |
+
A version of this model in ONNX format (including an INT8 quantized ONNX version) is now available at [https://huggingface.co/SamLowe/roberta-base-go_emotions-onnx](https://huggingface.co/SamLowe/roberta-base-go_emotions-onnx). These are faster for inference, esp for smaller batch sizes, massively reduce the size of the dependencies required for inference, make inference of the model more multi-platform, and in the case of the quantized version reduce the model file/download size by 75% whilst retaining almost all the accuracy if you only need inference.
|
24 |
+
|
25 |
+
#### Dataset used for the model
|
26 |
+
|
27 |
+
[go_emotions](https://huggingface.co/datasets/go_emotions) is based on Reddit data and has 28 labels. It is a multi-label dataset where one or multiple labels may apply for any given input text, hence this model is a multi-label classification model with 28 'probability' float outputs for any given input text. Typically a threshold of 0.5 is applied to the probabilities for the prediction for each label.
|
28 |
+
|
29 |
+
#### How the model was created
|
30 |
+
|
31 |
+
The model was trained using `AutoModelForSequenceClassification.from_pretrained` with `problem_type="multi_label_classification"` for 3 epochs with a learning rate of 2e-5 and weight decay of 0.01.
|
32 |
+
|
33 |
+
#### Inference
|
34 |
+
|
35 |
+
There are multiple ways to use this model in Huggingface Transformers. Possibly the simplest is using a pipeline:
|
36 |
+
|
37 |
+
```python
|
38 |
+
from transformers import pipeline
|
39 |
+
|
40 |
+
classifier = pipeline(task="text-classification", model="SamLowe/roberta-base-go_emotions", top_k=None)
|
41 |
+
|
42 |
+
sentences = ["I am not having a great day"]
|
43 |
+
|
44 |
+
model_outputs = classifier(sentences)
|
45 |
+
print(model_outputs[0])
|
46 |
+
# produces a list of dicts for each of the labels
|
47 |
+
```
|
48 |
+
|
49 |
+
#### Evaluation / metrics
|
50 |
+
|
51 |
+
Evaluation of the model is available at
|
52 |
+
|
53 |
+
- https://github.com/samlowe/go_emotions-dataset/blob/main/eval-roberta-base-go_emotions.ipynb
|
54 |
+
|
55 |
+
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/samlowe/go_emotions-dataset/blob/main/eval-roberta-base-go_emotions.ipynb)
|
56 |
+
|
57 |
+
##### Summary
|
58 |
+
|
59 |
+
As provided in the above notebook, evaluation of the multi-label output (of the 28 dim output via a threshold of 0.5 to binarize each) using the dataset test split gives:
|
60 |
+
|
61 |
+
- Accuracy: 0.474
|
62 |
+
- Precision: 0.575
|
63 |
+
- Recall: 0.396
|
64 |
+
- F1: 0.450
|
65 |
+
|
66 |
+
But the metrics are more meaningful when measured per label given the multi-label nature (each label is effectively an independent binary classification) and the fact that there is drastically different representations of the labels in the dataset.
|
67 |
+
|
68 |
+
With a threshold of 0.5 applied to binarize the model outputs, as per the above notebook, the metrics per label are:
|
69 |
+
|
70 |
+
| | accuracy | precision | recall | f1 | mcc | support | threshold |
|
71 |
+
| -------------- | -------- | --------- | ------ | ----- | ----- | ------- | --------- |
|
72 |
+
| admiration | 0.946 | 0.725 | 0.675 | 0.699 | 0.670 | 504 | 0.5 |
|
73 |
+
| amusement | 0.982 | 0.790 | 0.871 | 0.829 | 0.821 | 264 | 0.5 |
|
74 |
+
| anger | 0.970 | 0.652 | 0.379 | 0.479 | 0.483 | 198 | 0.5 |
|
75 |
+
| annoyance | 0.940 | 0.472 | 0.159 | 0.238 | 0.250 | 320 | 0.5 |
|
76 |
+
| approval | 0.942 | 0.609 | 0.302 | 0.404 | 0.403 | 351 | 0.5 |
|
77 |
+
| caring | 0.973 | 0.448 | 0.319 | 0.372 | 0.364 | 135 | 0.5 |
|
78 |
+
| confusion | 0.972 | 0.500 | 0.431 | 0.463 | 0.450 | 153 | 0.5 |
|
79 |
+
| curiosity | 0.950 | 0.537 | 0.356 | 0.428 | 0.412 | 284 | 0.5 |
|
80 |
+
| desire | 0.987 | 0.630 | 0.410 | 0.496 | 0.502 | 83 | 0.5 |
|
81 |
+
| disappointment | 0.974 | 0.625 | 0.199 | 0.302 | 0.343 | 151 | 0.5 |
|
82 |
+
| disapproval | 0.950 | 0.494 | 0.307 | 0.379 | 0.365 | 267 | 0.5 |
|
83 |
+
| disgust | 0.982 | 0.707 | 0.333 | 0.453 | 0.478 | 123 | 0.5 |
|
84 |
+
| embarrassment | 0.994 | 0.750 | 0.243 | 0.367 | 0.425 | 37 | 0.5 |
|
85 |
+
| excitement | 0.983 | 0.603 | 0.340 | 0.435 | 0.445 | 103 | 0.5 |
|
86 |
+
| fear | 0.992 | 0.758 | 0.603 | 0.671 | 0.672 | 78 | 0.5 |
|
87 |
+
| gratitude | 0.990 | 0.960 | 0.881 | 0.919 | 0.914 | 352 | 0.5 |
|
88 |
+
| grief | 0.999 | 0.000 | 0.000 | 0.000 | 0.000 | 6 | 0.5 |
|
89 |
+
| joy | 0.978 | 0.647 | 0.559 | 0.600 | 0.590 | 161 | 0.5 |
|
90 |
+
| love | 0.982 | 0.773 | 0.832 | 0.802 | 0.793 | 238 | 0.5 |
|
91 |
+
| nervousness | 0.996 | 0.600 | 0.130 | 0.214 | 0.278 | 23 | 0.5 |
|
92 |
+
| optimism | 0.972 | 0.667 | 0.376 | 0.481 | 0.488 | 186 | 0.5 |
|
93 |
+
| pride | 0.997 | 0.000 | 0.000 | 0.000 | 0.000 | 16 | 0.5 |
|
94 |
+
| realization | 0.974 | 0.541 | 0.138 | 0.220 | 0.264 | 145 | 0.5 |
|
95 |
+
| relief | 0.998 | 0.000 | 0.000 | 0.000 | 0.000 | 11 | 0.5 |
|
96 |
+
| remorse | 0.991 | 0.553 | 0.750 | 0.636 | 0.640 | 56 | 0.5 |
|
97 |
+
| sadness | 0.977 | 0.621 | 0.494 | 0.550 | 0.542 | 156 | 0.5 |
|
98 |
+
| surprise | 0.981 | 0.750 | 0.404 | 0.525 | 0.542 | 141 | 0.5 |
|
99 |
+
| neutral | 0.782 | 0.694 | 0.604 | 0.646 | 0.492 | 1787 | 0.5 |
|
100 |
+
|
101 |
+
Optimizing the threshold per label for the one that gives the optimum F1 metrics gives slightly better metrics - sacrificing some precision for a greater gain in recall, hence to the benefit of F1 (how this was done is shown in the above notebook):
|
102 |
+
|
103 |
+
| | accuracy | precision | recall | f1 | mcc | support | threshold |
|
104 |
+
| -------------- | -------- | --------- | ------ | ----- | ----- | ------- | --------- |
|
105 |
+
| admiration | 0.940 | 0.651 | 0.776 | 0.708 | 0.678 | 504 | 0.25 |
|
106 |
+
| amusement | 0.982 | 0.781 | 0.890 | 0.832 | 0.825 | 264 | 0.45 |
|
107 |
+
| anger | 0.959 | 0.454 | 0.601 | 0.517 | 0.502 | 198 | 0.15 |
|
108 |
+
| annoyance | 0.864 | 0.243 | 0.619 | 0.349 | 0.328 | 320 | 0.10 |
|
109 |
+
| approval | 0.926 | 0.432 | 0.442 | 0.437 | 0.397 | 351 | 0.30 |
|
110 |
+
| caring | 0.972 | 0.426 | 0.385 | 0.405 | 0.391 | 135 | 0.40 |
|
111 |
+
| confusion | 0.974 | 0.548 | 0.412 | 0.470 | 0.462 | 153 | 0.55 |
|
112 |
+
| curiosity | 0.943 | 0.473 | 0.711 | 0.568 | 0.552 | 284 | 0.25 |
|
113 |
+
| desire | 0.985 | 0.518 | 0.530 | 0.524 | 0.516 | 83 | 0.25 |
|
114 |
+
| disappointment | 0.974 | 0.562 | 0.298 | 0.390 | 0.398 | 151 | 0.40 |
|
115 |
+
| disapproval | 0.941 | 0.414 | 0.468 | 0.439 | 0.409 | 267 | 0.30 |
|
116 |
+
| disgust | 0.978 | 0.523 | 0.463 | 0.491 | 0.481 | 123 | 0.20 |
|
117 |
+
| embarrassment | 0.994 | 0.567 | 0.459 | 0.507 | 0.507 | 37 | 0.10 |
|
118 |
+
| excitement | 0.981 | 0.500 | 0.417 | 0.455 | 0.447 | 103 | 0.35 |
|
119 |
+
| fear | 0.991 | 0.712 | 0.667 | 0.689 | 0.685 | 78 | 0.40 |
|
120 |
+
| gratitude | 0.990 | 0.957 | 0.889 | 0.922 | 0.917 | 352 | 0.45 |
|
121 |
+
| grief | 0.999 | 0.333 | 0.333 | 0.333 | 0.333 | 6 | 0.05 |
|
122 |
+
| joy | 0.978 | 0.623 | 0.646 | 0.634 | 0.623 | 161 | 0.40 |
|
123 |
+
| love | 0.982 | 0.740 | 0.899 | 0.812 | 0.807 | 238 | 0.25 |
|
124 |
+
| nervousness | 0.996 | 0.571 | 0.348 | 0.432 | 0.444 | 23 | 0.25 |
|
125 |
+
| optimism | 0.971 | 0.580 | 0.565 | 0.572 | 0.557 | 186 | 0.20 |
|
126 |
+
| pride | 0.998 | 0.875 | 0.438 | 0.583 | 0.618 | 16 | 0.10 |
|
127 |
+
| realization | 0.961 | 0.270 | 0.262 | 0.266 | 0.246 | 145 | 0.15 |
|
128 |
+
| relief | 0.992 | 0.152 | 0.636 | 0.246 | 0.309 | 11 | 0.05 |
|
129 |
+
| remorse | 0.991 | 0.541 | 0.946 | 0.688 | 0.712 | 56 | 0.10 |
|
130 |
+
| sadness | 0.977 | 0.599 | 0.583 | 0.591 | 0.579 | 156 | 0.40 |
|
131 |
+
| surprise | 0.977 | 0.543 | 0.674 | 0.601 | 0.593 | 141 | 0.15 |
|
132 |
+
| neutral | 0.758 | 0.598 | 0.810 | 0.688 | 0.513 | 1787 | 0.25 |
|
133 |
+
|
134 |
+
This improves the overall metrics:
|
135 |
+
|
136 |
+
- Precision: 0.542
|
137 |
+
- Recall: 0.577
|
138 |
+
- F1: 0.541
|
139 |
+
|
140 |
+
Or if calculated weighted by the relative size of the support of each label:
|
141 |
+
|
142 |
+
- Precision: 0.572
|
143 |
+
- Recall: 0.677
|
144 |
+
- F1: 0.611
|
145 |
+
|
146 |
+
#### Commentary on the dataset
|
147 |
+
|
148 |
+
Some labels (E.g. gratitude) when considered independently perform very strongly with F1 exceeding 0.9, whilst others (E.g. relief) perform very poorly.
|
149 |
+
|
150 |
+
This is a challenging dataset. Labels such as relief do have much fewer examples in the training data (less than 100 out of the 40k+, and only 11 in the test split).
|
151 |
+
|
152 |
+
But there is also some ambiguity and/or labelling errors visible in the training data of go_emotions that is suspected to constrain the performance. Data cleaning on the dataset to reduce some of the mistakes, ambiguity, conflicts and duplication in the labelling would produce a higher performing model.
|
config.json
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "admiration",
|
15 |
+
"1": "amusement",
|
16 |
+
"2": "anger",
|
17 |
+
"3": "annoyance",
|
18 |
+
"4": "approval",
|
19 |
+
"5": "caring",
|
20 |
+
"6": "confusion",
|
21 |
+
"7": "curiosity",
|
22 |
+
"8": "desire",
|
23 |
+
"9": "disappointment",
|
24 |
+
"10": "disapproval",
|
25 |
+
"11": "disgust",
|
26 |
+
"12": "embarrassment",
|
27 |
+
"13": "excitement",
|
28 |
+
"14": "fear",
|
29 |
+
"15": "gratitude",
|
30 |
+
"16": "grief",
|
31 |
+
"17": "joy",
|
32 |
+
"18": "love",
|
33 |
+
"19": "nervousness",
|
34 |
+
"20": "optimism",
|
35 |
+
"21": "pride",
|
36 |
+
"22": "realization",
|
37 |
+
"23": "relief",
|
38 |
+
"24": "remorse",
|
39 |
+
"25": "sadness",
|
40 |
+
"26": "surprise",
|
41 |
+
"27": "neutral"
|
42 |
+
},
|
43 |
+
"initializer_range": 0.02,
|
44 |
+
"intermediate_size": 3072,
|
45 |
+
"label2id": {
|
46 |
+
"admiration": 0,
|
47 |
+
"amusement": 1,
|
48 |
+
"anger": 2,
|
49 |
+
"annoyance": 3,
|
50 |
+
"approval": 4,
|
51 |
+
"caring": 5,
|
52 |
+
"confusion": 6,
|
53 |
+
"curiosity": 7,
|
54 |
+
"desire": 8,
|
55 |
+
"disappointment": 9,
|
56 |
+
"disapproval": 10,
|
57 |
+
"disgust": 11,
|
58 |
+
"embarrassment": 12,
|
59 |
+
"excitement": 13,
|
60 |
+
"fear": 14,
|
61 |
+
"gratitude": 15,
|
62 |
+
"grief": 16,
|
63 |
+
"joy": 17,
|
64 |
+
"love": 18,
|
65 |
+
"nervousness": 19,
|
66 |
+
"neutral": 27,
|
67 |
+
"optimism": 20,
|
68 |
+
"pride": 21,
|
69 |
+
"realization": 22,
|
70 |
+
"relief": 23,
|
71 |
+
"remorse": 24,
|
72 |
+
"sadness": 25,
|
73 |
+
"surprise": 26
|
74 |
+
},
|
75 |
+
"layer_norm_eps": 1e-05,
|
76 |
+
"max_position_embeddings": 514,
|
77 |
+
"model_type": "roberta",
|
78 |
+
"num_attention_heads": 12,
|
79 |
+
"num_hidden_layers": 12,
|
80 |
+
"pad_token_id": 1,
|
81 |
+
"position_embedding_type": "absolute",
|
82 |
+
"problem_type": "multi_label_classification",
|
83 |
+
"torch_dtype": "float32",
|
84 |
+
"transformers_version": "4.21.3",
|
85 |
+
"type_vocab_size": 1,
|
86 |
+
"use_cache": true,
|
87 |
+
"vocab_size": 50265
|
88 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84d6d338b4cf63f0ed3c990a0ce748d32d1d2965c072f4645accaa71af3888c0
|
3 |
+
size 498697004
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fd088956d38ce7ca956815b0203caf6f29b492b04c22c50d67542b3e02c449d
|
3 |
+
size 498740269
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<s>",
|
4 |
+
"cls_token": "<s>",
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"errors": "replace",
|
7 |
+
"mask_token": "<mask>",
|
8 |
+
"model_max_length": 512,
|
9 |
+
"name_or_path": "roberta-base",
|
10 |
+
"pad_token": "<pad>",
|
11 |
+
"sep_token": "</s>",
|
12 |
+
"special_tokens_map_file": null,
|
13 |
+
"tokenizer_class": "RobertaTokenizer",
|
14 |
+
"trim_offsets": true,
|
15 |
+
"unk_token": "<unk>"
|
16 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.5862595419847328,
|
3 |
+
"best_model_checkpoint": "roberta-base-go_emotions/checkpoint-16281",
|
4 |
+
"epoch": 3.0,
|
5 |
+
"global_step": 16281,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.09,
|
12 |
+
"learning_rate": 1.9815736134144095e-05,
|
13 |
+
"loss": 0.1826,
|
14 |
+
"step": 500
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.18,
|
18 |
+
"learning_rate": 1.963147226828819e-05,
|
19 |
+
"loss": 0.1317,
|
20 |
+
"step": 1000
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.28,
|
24 |
+
"learning_rate": 1.9447208402432286e-05,
|
25 |
+
"loss": 0.1146,
|
26 |
+
"step": 1500
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.37,
|
30 |
+
"learning_rate": 1.9262944536576377e-05,
|
31 |
+
"loss": 0.1078,
|
32 |
+
"step": 2000
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.46,
|
36 |
+
"learning_rate": 1.9078680670720474e-05,
|
37 |
+
"loss": 0.1006,
|
38 |
+
"step": 2500
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.55,
|
42 |
+
"learning_rate": 1.8894416804864568e-05,
|
43 |
+
"loss": 0.0976,
|
44 |
+
"step": 3000
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.64,
|
48 |
+
"learning_rate": 1.871015293900866e-05,
|
49 |
+
"loss": 0.096,
|
50 |
+
"step": 3500
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.74,
|
54 |
+
"learning_rate": 1.8525889073152755e-05,
|
55 |
+
"loss": 0.0925,
|
56 |
+
"step": 4000
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.83,
|
60 |
+
"learning_rate": 1.8341625207296852e-05,
|
61 |
+
"loss": 0.0921,
|
62 |
+
"step": 4500
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.92,
|
66 |
+
"learning_rate": 1.8157361341440943e-05,
|
67 |
+
"loss": 0.0911,
|
68 |
+
"step": 5000
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 1.0,
|
72 |
+
"eval_accuracy": 0.40213785477331365,
|
73 |
+
"eval_f1": 0.5346146303196705,
|
74 |
+
"eval_loss": 0.08816272765398026,
|
75 |
+
"eval_roc_auc": 0.7098850238721621,
|
76 |
+
"eval_runtime": 11.8306,
|
77 |
+
"eval_samples_per_second": 458.641,
|
78 |
+
"eval_steps_per_second": 57.394,
|
79 |
+
"step": 5427
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 1.01,
|
83 |
+
"learning_rate": 1.797309747558504e-05,
|
84 |
+
"loss": 0.0897,
|
85 |
+
"step": 5500
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"epoch": 1.11,
|
89 |
+
"learning_rate": 1.7788833609729134e-05,
|
90 |
+
"loss": 0.0856,
|
91 |
+
"step": 6000
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 1.2,
|
95 |
+
"learning_rate": 1.7604569743873227e-05,
|
96 |
+
"loss": 0.0816,
|
97 |
+
"step": 6500
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"epoch": 1.29,
|
101 |
+
"learning_rate": 1.742030587801732e-05,
|
102 |
+
"loss": 0.0853,
|
103 |
+
"step": 7000
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"epoch": 1.38,
|
107 |
+
"learning_rate": 1.7236042012161415e-05,
|
108 |
+
"loss": 0.0846,
|
109 |
+
"step": 7500
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 1.47,
|
113 |
+
"learning_rate": 1.7051778146305512e-05,
|
114 |
+
"loss": 0.0843,
|
115 |
+
"step": 8000
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 1.57,
|
119 |
+
"learning_rate": 1.6867514280449606e-05,
|
120 |
+
"loss": 0.0807,
|
121 |
+
"step": 8500
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.66,
|
125 |
+
"learning_rate": 1.66832504145937e-05,
|
126 |
+
"loss": 0.0796,
|
127 |
+
"step": 9000
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"epoch": 1.75,
|
131 |
+
"learning_rate": 1.6498986548737793e-05,
|
132 |
+
"loss": 0.081,
|
133 |
+
"step": 9500
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"epoch": 1.84,
|
137 |
+
"learning_rate": 1.6314722682881887e-05,
|
138 |
+
"loss": 0.0798,
|
139 |
+
"step": 10000
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"epoch": 1.93,
|
143 |
+
"learning_rate": 1.613045881702598e-05,
|
144 |
+
"loss": 0.0821,
|
145 |
+
"step": 10500
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 2.0,
|
149 |
+
"eval_accuracy": 0.44010320678216,
|
150 |
+
"eval_f1": 0.5612426312342098,
|
151 |
+
"eval_loss": 0.08432479202747345,
|
152 |
+
"eval_roc_auc": 0.7305379849481191,
|
153 |
+
"eval_runtime": 11.8056,
|
154 |
+
"eval_samples_per_second": 459.613,
|
155 |
+
"eval_steps_per_second": 57.515,
|
156 |
+
"step": 10854
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 2.03,
|
160 |
+
"learning_rate": 1.5946194951170078e-05,
|
161 |
+
"loss": 0.0776,
|
162 |
+
"step": 11000
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"epoch": 2.12,
|
166 |
+
"learning_rate": 1.5761931085314172e-05,
|
167 |
+
"loss": 0.0726,
|
168 |
+
"step": 11500
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 2.21,
|
172 |
+
"learning_rate": 1.5577667219458266e-05,
|
173 |
+
"loss": 0.0718,
|
174 |
+
"step": 12000
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 2.3,
|
178 |
+
"learning_rate": 1.539340335360236e-05,
|
179 |
+
"loss": 0.0735,
|
180 |
+
"step": 12500
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"epoch": 2.4,
|
184 |
+
"learning_rate": 1.5209139487746453e-05,
|
185 |
+
"loss": 0.0735,
|
186 |
+
"step": 13000
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 2.49,
|
190 |
+
"learning_rate": 1.5024875621890549e-05,
|
191 |
+
"loss": 0.0721,
|
192 |
+
"step": 13500
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 2.58,
|
196 |
+
"learning_rate": 1.4840611756034643e-05,
|
197 |
+
"loss": 0.0722,
|
198 |
+
"step": 14000
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 2.67,
|
202 |
+
"learning_rate": 1.4656347890178736e-05,
|
203 |
+
"loss": 0.0751,
|
204 |
+
"step": 14500
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 2.76,
|
208 |
+
"learning_rate": 1.4472084024322832e-05,
|
209 |
+
"loss": 0.0727,
|
210 |
+
"step": 15000
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"epoch": 2.86,
|
214 |
+
"learning_rate": 1.4287820158466926e-05,
|
215 |
+
"loss": 0.0735,
|
216 |
+
"step": 15500
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"epoch": 2.95,
|
220 |
+
"learning_rate": 1.4103556292611021e-05,
|
221 |
+
"loss": 0.0714,
|
222 |
+
"step": 16000
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"epoch": 3.0,
|
226 |
+
"eval_accuracy": 0.47475119793586434,
|
227 |
+
"eval_f1": 0.5862595419847328,
|
228 |
+
"eval_loss": 0.0838962271809578,
|
229 |
+
"eval_roc_auc": 0.7506773514396311,
|
230 |
+
"eval_runtime": 11.8261,
|
231 |
+
"eval_samples_per_second": 458.814,
|
232 |
+
"eval_steps_per_second": 57.415,
|
233 |
+
"step": 16281
|
234 |
+
}
|
235 |
+
],
|
236 |
+
"max_steps": 54270,
|
237 |
+
"num_train_epochs": 10,
|
238 |
+
"total_flos": 8568237917583360.0,
|
239 |
+
"trial_name": null,
|
240 |
+
"trial_params": null
|
241 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|