andrijdavid commited on
Commit
8924180
1 Parent(s): 0529ad5

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,17 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Q2_K/Q2_K-00001-of-00001.gguf filter=lfs diff=lfs merge=lfs -text
37
+ Q3_K_L/Q3_K_L-00001-of-00001.gguf filter=lfs diff=lfs merge=lfs -text
38
+ Q3_K_M/Q3_K_M-00001-of-00001.gguf filter=lfs diff=lfs merge=lfs -text
39
+ Q3_K_S/Q3_K_S-00001-of-00001.gguf filter=lfs diff=lfs merge=lfs -text
40
+ Q4_0/Q4_0-00001-of-00001.gguf filter=lfs diff=lfs merge=lfs -text
41
+ Q4_1/Q4_1-00001-of-00001.gguf filter=lfs diff=lfs merge=lfs -text
42
+ Q4_K_M/Q4_K_M-00001-of-00001.gguf filter=lfs diff=lfs merge=lfs -text
43
+ Q4_K_S/Q4_K_S-00001-of-00001.gguf filter=lfs diff=lfs merge=lfs -text
44
+ Q5_0/Q5_0-00001-of-00001.gguf filter=lfs diff=lfs merge=lfs -text
45
+ Q5_1/Q5_1-00001-of-00001.gguf filter=lfs diff=lfs merge=lfs -text
46
+ Q5_K_M/Q5_K_M-00001-of-00001.gguf filter=lfs diff=lfs merge=lfs -text
47
+ Q5_K_S/Q5_K_S-00001-of-00001.gguf filter=lfs diff=lfs merge=lfs -text
48
+ Q6_K/Q6_K-00001-of-00001.gguf filter=lfs diff=lfs merge=lfs -text
49
+ Q8_0/Q8_0-00001-of-00001.gguf filter=lfs diff=lfs merge=lfs -text
Q2_K/Q2_K-00001-of-00001.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0faa881d3d9a34adf60bf625d4df2fdc41c6c2620e8e2b0123ddfcdd615486f8
3
+ size 3481447712
Q3_K_L/Q3_K_L-00001-of-00001.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36ac8a7c71a1208d15d500fe5704dae26072a4585a8cc26cdb5a8f1f1594ce25
3
+ size 4709068064
Q3_K_M/Q3_K_M-00001-of-00001.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7e0a153f578f030159a777f2f198a2897473497fb30a4cac1de551c97fbf32f
3
+ size 4369329440
Q3_K_S/Q3_K_S-00001-of-00001.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a75b274561e00abede5b65e5bb5d949dd17577d3083221209ab27a9a08ccf2c9
3
+ size 3982404896
Q4_0/Q4_0-00001-of-00001.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5ad1712c169e1eb4bab7a7a842caf4c99afb973ee5f7593edbb104dac1a163c
3
+ size 5011844384
Q4_1/Q4_1-00001-of-00001.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:790acb8a371ef0fa598f6ecce4e377fadba9014a3259a1de30ff5cacf9a59f1f
3
+ size 5496286496
Q4_K_M/Q4_K_M-00001-of-00001.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e2e34554b5ce0086c07f2815fef6b86b3d0cb2a1c103722d1e273521a50bd7b
3
+ size 5329759520
Q4_K_S/Q4_K_S-00001-of-00001.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3723977daed343ad964e1958825a2920ef002a3f3294071e2323b8d2667a66e0
3
+ size 5046447392
Q5_0/Q5_0-00001-of-00001.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6998a0e5e6bc9cfe617dc0ee7b84bce63eb4d4f356a9e03459b4fde0e41b37e
3
+ size 5980728608
Q5_1/Q5_1-00001-of-00001.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7582db3a0c3e80058694fb978270fd7e270705f4fa896758ff1465ed5795ae82
3
+ size 6465170720
Q5_K_M/Q5_K_M-00001-of-00001.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3188fed0f101327f98935bbec257e0c85c121965c5ac48ff6cd34a690d4fde98
3
+ size 6144503072
Q5_K_S/Q5_K_S-00001-of-00001.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f935acd5fa3560c9553ef04cd8f88fd22bda26e3af859d638a6546ac11f9f483
3
+ size 5980728608
Q6_K/Q6_K-00001-of-00001.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9454fa23b6e6e7c8dfa1d50fab8a7d178971de6720ecbd39d271ac4672fe4145
3
+ size 7010168096
Q8_0/Q8_0-00001-of-00001.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64c7f87c2f9ab2f76eaa9e194f5bb2ef89cdd5c545ba2b470688a1fdce6337c2
3
+ size 9077845280
README.md ADDED
@@ -0,0 +1,411 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ ---
4
+ license: gemma
5
+ library_name: transformers
6
+ tags:
7
+ - GGUF
8
+ widget:
9
+ - messages:
10
+ - role: user
11
+ content: How does the brain work?
12
+ inference:
13
+ parameters:
14
+ max_new_tokens: 200
15
+ extra_gated_heading: Access Gemma on Hugging Face
16
+ extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and
17
+ agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging
18
+ Face and click below. Requests are processed immediately.
19
+ extra_gated_button_content: Acknowledge license
20
+ quantized_by: andrijdavid
21
+ ---
22
+ # gemma-1.1-7b-it-GGUF
23
+ - Original model: [gemma-1.1-7b-it](https://huggingface.co/google/gemma-1.1-7b-it)
24
+
25
+ <!-- description start -->
26
+ ## Description
27
+
28
+ This repo contains GGUF format model files for [gemma-1.1-7b-it](https://huggingface.co/google/gemma-1.1-7b-it).
29
+
30
+ <!-- description end -->
31
+ <!-- README_GGUF.md-about-gguf start -->
32
+ ### About GGUF
33
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
34
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
35
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). This is the source project for GGUF, providing both a Command Line Interface (CLI) and a server option.
36
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), Known as the most widely used web UI, this project boasts numerous features and powerful extensions, and supports GPU acceleration.
37
+ * [Ollama](https://github.com/jmorganca/ollama) Ollama is a lightweight and extensible framework designed for building and running language models locally. It features a simple API for creating, managing, and executing models, along with a library of pre-built models for use in various applications​
38
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), A comprehensive web UI offering GPU acceleration across all platforms and architectures, particularly renowned for storytelling.
39
+ * [GPT4All](https://gpt4all.io), This is a free and open source GUI that runs locally, supporting Windows, Linux, and macOS with full GPU acceleration.
40
+ * [LM Studio](https://lmstudio.ai/) An intuitive and powerful local GUI for Windows and macOS (Silicon), featuring GPU acceleration.
41
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui). A notable web UI with a variety of unique features, including a comprehensive model library for easy model selection.
42
+ * [Faraday.dev](https://faraday.dev/), An attractive, user-friendly character-based chat GUI for Windows and macOS (both Silicon and Intel), also offering GPU acceleration.
43
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), A Python library equipped with GPU acceleration, LangChain support, and an OpenAI-compatible API server.
44
+ * [candle](https://github.com/huggingface/candle), A Rust-based ML framework focusing on performance, including GPU support, and designed for ease of use.
45
+ * [ctransformers](https://github.com/marella/ctransformers), A Python library featuring GPU acceleration, LangChain support, and an OpenAI-compatible AI server.
46
+ * [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents.
47
+ <!-- README_GGUF.md-about-gguf end -->
48
+
49
+ <!-- compatibility_gguf start -->
50
+ ## Explanation of quantisation methods
51
+ <details>
52
+ <summary>Click to see details</summary>
53
+ The new methods available are:
54
+
55
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
56
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
57
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
58
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
59
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw.
60
+ </details>
61
+ <!-- compatibility_gguf end -->
62
+
63
+ <!-- README_GGUF.md-how-to-download start -->
64
+ ## How to download GGUF files
65
+
66
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single folder.
67
+
68
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
69
+
70
+ * LM Studio
71
+ * LoLLMS Web UI
72
+ * Faraday.dev
73
+
74
+ ### In `text-generation-webui`
75
+
76
+ Under Download Model, you can enter the model repo: LiteLLMs/gemma-1.1-7b-it-GGUF and below it, a specific filename to download, such as: Q4_0/Q4_0-00001-of-00009.gguf.
77
+
78
+ Then click Download.
79
+
80
+ ### On the command line, including multiple files at once
81
+
82
+ I recommend using the `huggingface-hub` Python library:
83
+
84
+ ```shell
85
+ pip3 install huggingface-hub
86
+ ```
87
+
88
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
89
+
90
+ ```shell
91
+ huggingface-cli download LiteLLMs/gemma-1.1-7b-it-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False
92
+ ```
93
+
94
+ <details>
95
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
96
+
97
+ You can also download multiple files at once with a pattern:
98
+
99
+ ```shell
100
+ huggingface-cli download LiteLLMs/gemma-1.1-7b-it-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
101
+ ```
102
+
103
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
104
+
105
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
106
+
107
+ ```shell
108
+ pip3 install huggingface_hub[hf_transfer]
109
+ ```
110
+
111
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
112
+
113
+ ```shell
114
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download LiteLLMs/gemma-1.1-7b-it-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False
115
+ ```
116
+
117
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
118
+ </details>
119
+ <!-- README_GGUF.md-how-to-download end -->
120
+ <!-- README_GGUF.md-how-to-run start -->
121
+ ## Example `llama.cpp` command
122
+
123
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
124
+
125
+ ```shell
126
+ ./main -ngl 35 -m Q4_0/Q4_0-00001-of-00009.gguf --color -c 8192 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>"
127
+ ```
128
+
129
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
130
+
131
+ Change `-c 8192` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
132
+
133
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
134
+
135
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
136
+
137
+ ## How to run in `text-generation-webui`
138
+
139
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
140
+
141
+ ## How to run from Python code
142
+
143
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
144
+
145
+ ### How to load this model in Python code, using llama-cpp-python
146
+
147
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
148
+
149
+ #### First install the package
150
+
151
+ Run one of the following commands, according to your system:
152
+
153
+ ```shell
154
+ # Base ctransformers with no GPU acceleration
155
+ pip install llama-cpp-python
156
+ # With NVidia CUDA acceleration
157
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
158
+ # Or with OpenBLAS acceleration
159
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
160
+ # Or with CLBLast acceleration
161
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
162
+ # Or with AMD ROCm GPU acceleration (Linux only)
163
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
164
+ # Or with Metal GPU acceleration for macOS systems only
165
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
166
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
167
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
168
+ pip install llama-cpp-python
169
+ ```
170
+
171
+ #### Simple llama-cpp-python example code
172
+
173
+ ```python
174
+ from llama_cpp import Llama
175
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
176
+ llm = Llama(
177
+ model_path="./Q4_0/Q4_0-00001-of-00009.gguf", # Download the model file first
178
+ n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
179
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
180
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
181
+ )
182
+ # Simple inference example
183
+ output = llm(
184
+ "<PROMPT>", # Prompt
185
+ max_tokens=512, # Generate up to 512 tokens
186
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
187
+ echo=True # Whether to echo the prompt
188
+ )
189
+ # Chat Completion API
190
+ llm = Llama(model_path="./Q4_0/Q4_0-00001-of-00009.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
191
+ llm.create_chat_completion(
192
+ messages = [
193
+ {"role": "system", "content": "You are a story writing assistant."},
194
+ {
195
+ "role": "user",
196
+ "content": "Write a story about llamas."
197
+ }
198
+ ]
199
+ )
200
+ ```
201
+
202
+ ## How to use with LangChain
203
+
204
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
205
+
206
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
207
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
208
+
209
+ <!-- README_GGUF.md-how-to-run end -->
210
+
211
+ <!-- footer end -->
212
+
213
+ <!-- original-model-card start -->
214
+ # Original model card: gemma-1.1-7b-it
215
+
216
+
217
+ # Gemma Model Card
218
+
219
+ **Model Page**: [Gemma](https://ai.google.dev/gemma/docs)
220
+
221
+ This model card corresponds to the latest 7B instruct version of the Gemma model. Here you can find other models in the Gemma family:
222
+
223
+ | | Base | Instruct |
224
+ | - | - | |
225
+ | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | 42.3 | 64.3 |
226
+ | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot | 71.4 | 81.2 |
227
+ | [PIQA](https://arxiv.org/abs/1911.11641) | 0-shot | 77.3 | 81.2 |
228
+ | [SocialIQA](https://arxiv.org/abs/1904.09728) | 0-shot | 49.7 | 51.8 |
229
+ | [BooIQ](https://arxiv.org/abs/1905.10044) | 0-shot | 69.4 | 83.2 |
230
+ | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | 65.4 | 72.3 |
231
+ | [CommonsenseQA](https://arxiv.org/abs/1811.00937) | 7-shot | 65.3 | 71.3 |
232
+ | [OpenBookQA](https://arxiv.org/abs/1809.02789) | | 47.8 | 52.8 |
233
+ | [ARC-e](https://arxiv.org/abs/1911.01547) | | 73.2 | 81.5 |
234
+ | [ARC-c](https://arxiv.org/abs/1911.01547) | | 42.1 | 53.2 |
235
+ | [TriviaQA](https://arxiv.org/abs/1705.03551) | 5-shot | 53.2 | 63.4 |
236
+ | [Natural Questions](https://github.com/google-research-datasets/natural-questions) | 5-shot | 12.5 | 23 |
237
+ | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | 22.0 | 32.3 |
238
+ | [MBPP](https://arxiv.org/abs/2108.07732) | 3-shot | 29.2 | 44.4 |
239
+ | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | 17.7 | 46.4 |
240
+ | [MATH](https://arxiv.org/abs/2108.07732) | 4-shot | 11.8 | 24.3 |
241
+ | [AGIEval](https://arxiv.org/abs/2304.06364) | | 24.2 | 41.7 |
242
+ | [BIG-Bench](https://arxiv.org/abs/2206.04615) | | 35.2 | 55.1 |
243
+ | | - | |
244
+ | **Average** | | **45.0** | **56.9** |
245
+
246
+ ## Ethics and Safety
247
+
248
+ Ethics and safety evaluation approach and results.
249
+
250
+ ### Evaluation Approach
251
+
252
+ Our evaluation methods include structured evaluations and internal red-teaming
253
+ testing of relevant content policies. Red-teaming was conducted by a number of
254
+ different teams, each with different goals and human evaluation metrics. These
255
+ models were evaluated against a number of different categories relevant to
256
+ ethics and safety, including:
257
+
258
+ * Text-to-Text Content Safety: Human evaluation on prompts covering safety
259
+ policies including child sexual abuse and exploitation, harassment, violence
260
+ and gore, and hate speech.
261
+ * Text-to-Text Representational Harms: Benchmark against relevant academic
262
+ datasets such as [WinoBias](https://arxiv.org/abs/1804.06876) and [BBQ Dataset](https://arxiv.org/abs/2110.08193v2).
263
+ * Memorization: Automated evaluation of memorization of training data, including
264
+ the risk of personally identifiable information exposure.
265
+ * Large-scale harm: Tests for "dangerous capabilities," such as chemical,
266
+ biological, radiological, and nuclear (CBRN) risks.
267
+
268
+ ### Evaluation Results
269
+
270
+ The results of ethics and safety evaluations are within acceptable thresholds
271
+ for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child
272
+ safety, content safety, representational harms, memorization, large-scale harms.
273
+ On top of robust internal evaluations, the results of well known safety
274
+ benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA
275
+ are shown here.
276
+
277
+ #### Gemma 1.0
278
+
279
+ | Benchmark | Metric | Gemma 1.0 IT 2B | Gemma 1.0 IT 7B |
280
+ | | - | |
281
+ | [RealToxicity][realtox] | average | 6.86 | 7.90 |
282
+ | [BOLD][bold] | | 45.57 | 49.08 |
283
+ | [CrowS-Pairs][crows] | top-1 | 45.82 | 51.33 |
284
+ | [BBQ Ambig][bbq] | 1-shot, top-1 | 62.58 | 92.54 |
285
+ | [BBQ Disambig][bbq] | top-1 | 54.62 | 71.99 |
286
+ | [Winogender][winogender] | top-1 | 51.25 | 54.17 |
287
+ | [TruthfulQA][truthfulqa] | | 44.84 | 31.81 |
288
+ | [Winobias 1_2][winobias] | | 56.12 | 59.09 |
289
+ | [Winobias 2_2][winobias] | | 91.10 | 92.23 |
290
+ | [Toxigen][toxigen] | | 29.77 | 39.59 |
291
+ | | - | |
292
+
293
+ #### Gemma 1.1
294
+
295
+ | Benchmark | Metric | Gemma 1.1 IT 2B | Gemma 1.1 IT 7B |
296
+ | | - | |
297
+ | [RealToxicity][realtox] | average | 7.03 | 8.04 |
298
+ | [BOLD][bold] | | 47.76 | |
299
+ | [CrowS-Pairs][crows] | top-1 | 45.89 | 49.67 |
300
+ | [BBQ Ambig][bbq] | 1-shot, top-1 | 58.97 | 86.06 |
301
+ | [BBQ Disambig][bbq] | top-1 | 53.90 | 85.08 |
302
+ | [Winogender][winogender] | top-1 | 50.14 | 57.64 |
303
+ | [TruthfulQA][truthfulqa] | | 44.24 | 45.34 |
304
+ | [Winobias 1_2][winobias] | | 55.93 | 59.22 |
305
+ | [Winobias 2_2][winobias] | | 89.46 | 89.2 |
306
+ | [Toxigen][toxigen] | | 29.64 | 38.75 |
307
+ | | - | |
308
+
309
+
310
+ ## Usage and Limitations
311
+
312
+ These models have certain limitations that users should be aware of.
313
+
314
+ ### Intended Usage
315
+
316
+ Open Large Language Models (LLMs) have a wide range of applications across
317
+ various industries and domains. The following list of potential uses is not
318
+ comprehensive. The purpose of this list is to provide contextual information
319
+ about the possible use-cases that the model creators considered as part of model
320
+ training and development.
321
+
322
+ * Content Creation and Communication
323
+ * Text Generation: These models can be used to generate creative text formats
324
+ such as poems, scripts, code, marketing copy, and email drafts.
325
+ * Chatbots and Conversational AI: Power conversational interfaces for customer
326
+ service, virtual assistants, or interactive applications.
327
+ * Text Summarization: Generate concise summaries of a text corpus, research
328
+ papers, or reports.
329
+ * Research and Education
330
+ * Natural Language Processing (NLP) Research: These models can serve as a
331
+ foundation for researchers to experiment with NLP techniques, develop
332
+ algorithms, and contribute to the advancement of the field.
333
+ * Language Learning Tools: Support interactive language learning experiences,
334
+ aiding in grammar correction or providing writing practice.
335
+ * Knowledge Exploration: Assist researchers in exploring large bodies of text
336
+ by generating summaries or answering questions about specific topics.
337
+
338
+ ### Limitations
339
+
340
+ * Training Data
341
+ * The quality and diversity of the training data significantly influence the
342
+ model's capabilities. Biases or gaps in the training data can lead to
343
+ limitations in the model's responses.
344
+ * The scope of the training dataset determines the subject areas the model can
345
+ handle effectively.
346
+ * Context and Task Complexity
347
+ * LLMs are better at tasks that can be framed with clear prompts and
348
+ instructions. Open-ended or highly complex tasks might be challenging.
349
+ * A model's performance can be influenced by the amount of context provided
350
+ (longer context generally leads to better outputs, up to a certain point).
351
+ * Language Ambiguity and Nuance
352
+ * Natural language is inherently complex. LLMs might struggle to grasp subtle
353
+ nuances, sarcasm, or figurative language.
354
+ * Factual Accuracy
355
+ * LLMs generate responses based on information they learned from their
356
+ training datasets, but they are not knowledge bases. They may generate
357
+ incorrect or outdated factual statements.
358
+ * Common Sense
359
+ * LLMs rely on statistical patterns in language. They might lack the ability
360
+ to apply common sense reasoning in certain situations.
361
+
362
+ ### Ethical Considerations and Risks
363
+
364
+ The development of large language models (LLMs) raises several ethical concerns.
365
+ In creating an open model, we have carefully considered the following:
366
+
367
+ * Bias and Fairness
368
+ * LLMs trained on large-scale, real-world text data can reflect socio-cultural
369
+ biases embedded in the training material. These models underwent careful
370
+ scrutiny, input data pre-processing described and posterior evaluations
371
+ reported in this card.
372
+ * Misinformation and Misuse
373
+ * LLMs can be misused to generate text that is false, misleading, or harmful.
374
+ * Guidelines are provided for responsible use with the model, see the
375
+ [Responsible Generative AI Toolkit](http://ai.google.dev/gemma/responsible).
376
+ * Transparency and Accountability:
377
+ * This model card summarizes details on the models' architecture,
378
+ capabilities, limitations, and evaluation processes.
379
+ * A responsibly developed open model offers the opportunity to share
380
+ innovation by making LLM technology accessible to developers and researchers
381
+ across the AI ecosystem.
382
+
383
+ Risks identified and mitigations:
384
+
385
+ * Perpetuation of biases: It's encouraged to perform continuous monitoring
386
+ (using evaluation metrics, human review) and the exploration of de-biasing
387
+ techniques during model training, fine-tuning, and other use cases.
388
+ * Generation of harmful content: Mechanisms and guidelines for content safety
389
+ are essential. Developers are encouraged to exercise caution and implement
390
+ appropriate content safety safeguards based on their specific product policies
391
+ and application use cases.
392
+ * Misuse for malicious purposes: Technical limitations and developer and
393
+ end-user education can help mitigate against malicious applications of LLMs.
394
+ Educational resources and reporting mechanisms for users to flag misuse are
395
+ provided. Prohibited uses of Gemma models are outlined in the
396
+ [Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy).
397
+ * Privacy violations: Models were trained on data filtered for removal of PII
398
+ (Personally Identifiable Information). Developers are encouraged to adhere to
399
+ privacy regulations with privacy-preserving techniques.
400
+
401
+ ### Benefits
402
+
403
+ At the time of release, this family of models provides high-performance open
404
+ large language model implementations designed from the ground up for Responsible
405
+ AI development compared to similarly sized models.
406
+
407
+ Using the benchmark evaluation metrics described in this document, these models
408
+ have shown to provide superior performance to other, comparably-sized open model
409
+ alternatives.
410
+
411
+ <!-- original-model-card end -->