--- license: gemma base_model: google/gemma-2b tags: - generated_from_trainer model-index: - name: G0515HMA24H results: [] --- # G0515HMA24H This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1169 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.171 | 0.09 | 10 | 2.7380 | | 2.343 | 0.18 | 20 | 1.7302 | | 1.2081 | 0.27 | 30 | 0.5724 | | 0.3215 | 0.36 | 40 | 0.1716 | | 0.1576 | 0.45 | 50 | 0.1560 | | 0.1519 | 0.54 | 60 | 0.1512 | | 0.1491 | 0.63 | 70 | 0.1486 | | 0.1507 | 0.73 | 80 | 0.1504 | | 0.1428 | 0.82 | 90 | 0.1496 | | 0.1455 | 0.91 | 100 | 0.1486 | | 0.1485 | 1.0 | 110 | 0.1495 | | 0.1441 | 1.09 | 120 | 0.1485 | | 0.1456 | 1.18 | 130 | 0.1489 | | 0.1458 | 1.27 | 140 | 0.1466 | | 0.1484 | 1.36 | 150 | 0.1462 | | 0.1424 | 1.45 | 160 | 0.1481 | | 0.1426 | 1.54 | 170 | 0.1445 | | 0.1447 | 1.63 | 180 | 0.1424 | | 0.1448 | 1.72 | 190 | 0.1439 | | 0.1398 | 1.81 | 200 | 0.1396 | | 0.1386 | 1.9 | 210 | 0.1333 | | 0.133 | 1.99 | 220 | 0.1277 | | 0.1266 | 2.08 | 230 | 0.1289 | | 0.126 | 2.18 | 240 | 0.1236 | | 0.1222 | 2.27 | 250 | 0.1262 | | 0.1248 | 2.36 | 260 | 0.1237 | | 0.1217 | 2.45 | 270 | 0.1209 | | 0.1197 | 2.54 | 280 | 0.1205 | | 0.1155 | 2.63 | 290 | 0.1188 | | 0.1123 | 2.72 | 300 | 0.1175 | | 0.1195 | 2.81 | 310 | 0.1171 | | 0.1192 | 2.9 | 320 | 0.1169 | | 0.1166 | 2.99 | 330 | 0.1169 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0