File size: 3,100 Bytes
6976bd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- generated_from_trainer
model-index:
- name: Phi0503HMA16
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Phi0503HMA16
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0775
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.3598 | 0.09 | 10 | 0.9925 |
| 0.4108 | 0.18 | 20 | 0.2307 |
| 0.2372 | 0.27 | 30 | 0.2352 |
| 0.2131 | 0.36 | 40 | 0.2189 |
| 0.1969 | 0.45 | 50 | 0.1518 |
| 0.1415 | 0.54 | 60 | 0.0999 |
| 0.0976 | 0.63 | 70 | 0.1068 |
| 0.0853 | 0.73 | 80 | 0.0846 |
| 0.0864 | 0.82 | 90 | 0.0784 |
| 0.0782 | 0.91 | 100 | 0.0734 |
| 0.0866 | 1.0 | 110 | 0.0806 |
| 0.0649 | 1.09 | 120 | 0.0712 |
| 0.0663 | 1.18 | 130 | 0.0769 |
| 0.0704 | 1.27 | 140 | 0.0729 |
| 0.0634 | 1.36 | 150 | 0.0740 |
| 0.068 | 1.45 | 160 | 0.0709 |
| 0.0645 | 1.54 | 170 | 0.0687 |
| 0.063 | 1.63 | 180 | 0.0689 |
| 0.0584 | 1.72 | 190 | 0.0604 |
| 0.065 | 1.81 | 200 | 0.0608 |
| 0.0532 | 1.9 | 210 | 0.0681 |
| 0.0539 | 1.99 | 220 | 0.0694 |
| 0.0313 | 2.08 | 230 | 0.0816 |
| 0.0356 | 2.18 | 240 | 0.0880 |
| 0.0296 | 2.27 | 250 | 0.0834 |
| 0.0287 | 2.36 | 260 | 0.0780 |
| 0.0336 | 2.45 | 270 | 0.0801 |
| 0.0236 | 2.54 | 280 | 0.0827 |
| 0.0263 | 2.63 | 290 | 0.0828 |
| 0.0335 | 2.72 | 300 | 0.0794 |
| 0.0317 | 2.81 | 310 | 0.0780 |
| 0.0296 | 2.9 | 320 | 0.0773 |
| 0.0289 | 2.99 | 330 | 0.0775 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
|