--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503HMA16 results: [] --- # Phi0503HMA16 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.3598 | 0.09 | 10 | 0.9925 | | 0.4108 | 0.18 | 20 | 0.2307 | | 0.2372 | 0.27 | 30 | 0.2352 | | 0.2131 | 0.36 | 40 | 0.2189 | | 0.1969 | 0.45 | 50 | 0.1518 | | 0.1415 | 0.54 | 60 | 0.0999 | | 0.0976 | 0.63 | 70 | 0.1068 | | 0.0853 | 0.73 | 80 | 0.0846 | | 0.0864 | 0.82 | 90 | 0.0784 | | 0.0782 | 0.91 | 100 | 0.0734 | | 0.0866 | 1.0 | 110 | 0.0806 | | 0.0649 | 1.09 | 120 | 0.0712 | | 0.0663 | 1.18 | 130 | 0.0769 | | 0.0704 | 1.27 | 140 | 0.0729 | | 0.0634 | 1.36 | 150 | 0.0740 | | 0.068 | 1.45 | 160 | 0.0709 | | 0.0645 | 1.54 | 170 | 0.0687 | | 0.063 | 1.63 | 180 | 0.0689 | | 0.0584 | 1.72 | 190 | 0.0604 | | 0.065 | 1.81 | 200 | 0.0608 | | 0.0532 | 1.9 | 210 | 0.0681 | | 0.0539 | 1.99 | 220 | 0.0694 | | 0.0313 | 2.08 | 230 | 0.0816 | | 0.0356 | 2.18 | 240 | 0.0880 | | 0.0296 | 2.27 | 250 | 0.0834 | | 0.0287 | 2.36 | 260 | 0.0780 | | 0.0336 | 2.45 | 270 | 0.0801 | | 0.0236 | 2.54 | 280 | 0.0827 | | 0.0263 | 2.63 | 290 | 0.0828 | | 0.0335 | 2.72 | 300 | 0.0794 | | 0.0317 | 2.81 | 310 | 0.0780 | | 0.0296 | 2.9 | 320 | 0.0773 | | 0.0289 | 2.99 | 330 | 0.0775 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0