--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: V0309P6 results: [] --- # V0309P6 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0648 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 20 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.969 | 0.09 | 10 | 0.5527 | | 0.2118 | 0.17 | 20 | 0.0895 | | 0.1076 | 0.26 | 30 | 0.0750 | | 0.0998 | 0.34 | 40 | 0.0690 | | 0.0936 | 0.43 | 50 | 0.0643 | | 0.0846 | 0.51 | 60 | 0.0642 | | 0.0784 | 0.6 | 70 | 0.0639 | | 0.0857 | 0.68 | 80 | 0.0668 | | 0.0748 | 0.77 | 90 | 0.0641 | | 0.111 | 0.85 | 100 | 0.0680 | | 0.0874 | 0.94 | 110 | 0.0704 | | 0.0842 | 1.02 | 120 | 0.0675 | | 0.0797 | 1.11 | 130 | 0.0678 | | 0.0731 | 1.19 | 140 | 0.0642 | | 0.0714 | 1.28 | 150 | 0.0584 | | 0.0709 | 1.37 | 160 | 0.0621 | | 0.0703 | 1.45 | 170 | 0.0587 | | 0.0638 | 1.54 | 180 | 0.0595 | | 0.0678 | 1.62 | 190 | 0.0580 | | 0.067 | 1.71 | 200 | 0.0600 | | 0.0672 | 1.79 | 210 | 0.0604 | | 0.0627 | 1.88 | 220 | 0.0640 | | 0.0587 | 1.96 | 230 | 0.0592 | | 0.057 | 2.05 | 240 | 0.0622 | | 0.0486 | 2.13 | 250 | 0.0663 | | 0.0484 | 2.22 | 260 | 0.0690 | | 0.0457 | 2.3 | 270 | 0.0677 | | 0.0529 | 2.39 | 280 | 0.0636 | | 0.0533 | 2.47 | 290 | 0.0622 | | 0.0523 | 2.56 | 300 | 0.0627 | | 0.0523 | 2.65 | 310 | 0.0638 | | 0.0456 | 2.73 | 320 | 0.0642 | | 0.048 | 2.82 | 330 | 0.0648 | | 0.0454 | 2.9 | 340 | 0.0642 | | 0.0491 | 2.99 | 350 | 0.0648 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1