V0409MP1 / README.md
Litzy619's picture
End of training
01081d6 verified
|
raw
history blame
2.48 kB
---
license: mit
base_model: microsoft/phi-2
tags:
- generated_from_trainer
model-index:
- name: V0409MP1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# V0409MP1
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3404
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 20
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 6.1578 | 0.09 | 10 | 5.3816 |
| 5.3721 | 0.18 | 20 | 4.1461 |
| 3.968 | 0.27 | 30 | 2.7849 |
| 2.7382 | 0.36 | 40 | 1.8394 |
| 1.863 | 0.45 | 50 | 1.2646 |
| 1.3779 | 0.54 | 60 | 0.9405 |
| 1.0695 | 0.63 | 70 | 0.7297 |
| 0.8284 | 0.73 | 80 | 0.5808 |
| 0.6698 | 0.82 | 90 | 0.4740 |
| 0.5725 | 0.91 | 100 | 0.3968 |
| 0.4905 | 1.0 | 110 | 0.3449 |
| 0.4426 | 1.09 | 120 | 0.3412 |
| 0.4443 | 1.18 | 130 | 0.3411 |
| 0.4747 | 1.27 | 140 | 0.3409 |
| 0.4367 | 1.36 | 150 | 0.3408 |
| 0.4515 | 1.45 | 160 | 0.3408 |
| 0.4519 | 1.54 | 170 | 0.3407 |
| 0.4503 | 1.63 | 180 | 0.3405 |
| 0.4419 | 1.72 | 190 | 0.3405 |
| 0.4423 | 1.81 | 200 | 0.3404 |
| 0.4565 | 1.9 | 210 | 0.3404 |
| 0.4598 | 1.99 | 220 | 0.3404 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1