File size: 2,622 Bytes
0d282ac 4f7a641 0d282ac 4f7a641 1a5c075 4f7a641 1a5c075 4f7a641 1a5c075 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: apache-2.0
language:
- en
- ja
tags:
- finetuned
library_name: transformers
pipeline_tag: text-generation
---
<img src="./veteus_logo.svg" width="100%" height="20%" alt="">
# Our Models
- [Vecteus](https://huggingface.co/Local-Novel-LLM-project/Vecteus-v1)
- [Ninja-v1](https://huggingface.co/Local-Novel-LLM-project/Ninja-v1)
- [Ninja-v1-128k](https://huggingface.co/Local-Novel-LLM-project/Ninja-v1-128k)
- [Ninja-v1-NSFW-128k](https://huggingface.co/Local-Novel-LLM-project/Ninja-v1-NSFW-128k)
## Model Card for Ninja-v1.0
The Mistral-7B--based Large Language Model (LLM) is an noveldataset fine-tuned version of the Mistral-7B-v0.1
Ninja has the following changes compared to Mistral-7B-v0.1.
- Achieving both high quality Japanese and English generation
- Memory ability that does not forget even after long-context generation
This model was created with the help of GPUs from the first LocalAI hackathon.
We would like to take this opportunity to thank
## List of Creation Methods
- Chatvector for multiple models
- Simple linear merging of result models
- Domain and Sentence Enhancement with LORA
- Context expansion
## Instruction format
Freed from templates. Congratulations
## Example prompts to improve (Japanese)
- BAD:γγγͺγγ―ββγ¨γγ¦ζ―γθγγΎγ
- GOOD: γγͺγγ―ββγ§γ
- BAD: γγͺγγ―ββγγ§γγΎγ
- GOOD: γγͺγγ―ββγγγΎγ
## Performing inference
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("Local-Novel-LLM-project/Ninja-v1-128k", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("Local-Novel-LLM-project/Ninja-v1-128k")
prompt = "Once upon a time,"
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(input_ids, max_length=100, do_sample=True)
generated_text = tokenizer.decode(output)
print(generated_text)
````
## Merge recipe
- WizardLM2 - mistralai/Mistral-7B-v0.1
- NousResearch/Yarn-Mistral-7b-128k - mistralai/Mistral-7B-v0.1
- Elizezen/Antler-7B - stabilityai/japanese-stablelm-instruct-gamma-7b
- NTQAI/chatntq-ja-7b-v1.0
The characteristics of each model are as follows.
- WizardLM2: High quality multitasking model
- Antler-7B: Model specialized for novel writing
- NTQAI/chatntq-ja-7b-v1.0 High quality Japanese specialized model
## Other points to keep in mind
- The training data may be biased. Be careful with the generated sentences.
- Memory usage may be large for long inferences.
- If possible, we recommend inferring with llamacpp rather than Transformers. |