|
---
|
|
language: en
|
|
license: cc-by-4.0
|
|
datasets:
|
|
- squad_v2
|
|
model-index:
|
|
- name: vicky4s4s/deepsets-bert-large-uncased-whole-word-masking-squad2
|
|
results:
|
|
- task:
|
|
type: question-answering
|
|
name: Question Answering
|
|
dataset:
|
|
name: squad_v2
|
|
type: squad_v2
|
|
config: squad_v2
|
|
split: validation
|
|
metrics:
|
|
- type: exact_match
|
|
value: 80.8846
|
|
name: Exact Match
|
|
verified: true
|
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2E5ZGNkY2ExZWViZGEwNWE3OGRmMWM2ZmE4ZDU4ZDQ1OGM3ZWE0NTVmZjFmYmZjZmJmNjJmYTc3NTM3OTk3OSIsInZlcnNpb24iOjF9.aSblF4ywh1fnHHrN6UGL392R5KLaH3FCKQlpiXo_EdQ4XXEAENUCjYm9HWDiFsgfSENL35GkbSyz_GAhnefsAQ
|
|
- type: f1
|
|
value: 83.8765
|
|
name: F1
|
|
verified: true
|
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGFlNmEzMTk2NjRkNTI3ZTk3ZTU1NWNlYzIyN2E0ZDFlNDA2ZjYwZWJlNThkMmRmMmE0YzcwYjIyZDM5NmRiMCIsInZlcnNpb24iOjF9.-rc2_Bsp_B26-o12MFYuAU0Ad2Hg9PDx7Preuk27WlhYJDeKeEr32CW8LLANQABR3Mhw2x8uTYkEUrSDMxxLBw
|
|
- task:
|
|
type: question-answering
|
|
name: Question Answering
|
|
dataset:
|
|
name: squad
|
|
type: squad
|
|
config: plain_text
|
|
split: validation
|
|
metrics:
|
|
- type: exact_match
|
|
value: 85.904
|
|
name: Exact Match
|
|
- type: f1
|
|
value: 92.586
|
|
name: F1
|
|
- task:
|
|
type: question-answering
|
|
name: Question Answering
|
|
dataset:
|
|
name: adversarial_qa
|
|
type: adversarial_qa
|
|
config: adversarialQA
|
|
split: validation
|
|
metrics:
|
|
- type: exact_match
|
|
value: 28.233
|
|
name: Exact Match
|
|
- type: f1
|
|
value: 41.170
|
|
name: F1
|
|
- task:
|
|
type: question-answering
|
|
name: Question Answering
|
|
dataset:
|
|
name: squad_adversarial
|
|
type: squad_adversarial
|
|
config: AddOneSent
|
|
split: validation
|
|
metrics:
|
|
- type: exact_match
|
|
value: 78.064
|
|
name: Exact Match
|
|
- type: f1
|
|
value: 83.591
|
|
name: F1
|
|
- task:
|
|
type: question-answering
|
|
name: Question Answering
|
|
dataset:
|
|
name: squadshifts amazon
|
|
type: squadshifts
|
|
config: amazon
|
|
split: test
|
|
metrics:
|
|
- type: exact_match
|
|
value: 65.615
|
|
name: Exact Match
|
|
- type: f1
|
|
value: 80.733
|
|
name: F1
|
|
- task:
|
|
type: question-answering
|
|
name: Question Answering
|
|
dataset:
|
|
name: squadshifts new_wiki
|
|
type: squadshifts
|
|
config: new_wiki
|
|
split: test
|
|
metrics:
|
|
- type: exact_match
|
|
value: 81.570
|
|
name: Exact Match
|
|
- type: f1
|
|
value: 91.199
|
|
name: F1
|
|
- task:
|
|
type: question-answering
|
|
name: Question Answering
|
|
dataset:
|
|
name: squadshifts nyt
|
|
type: squadshifts
|
|
config: nyt
|
|
split: test
|
|
metrics:
|
|
- type: exact_match
|
|
value: 83.279
|
|
name: Exact Match
|
|
- type: f1
|
|
value: 91.090
|
|
name: F1
|
|
- task:
|
|
type: question-answering
|
|
name: Question Answering
|
|
dataset:
|
|
name: squadshifts reddit
|
|
type: squadshifts
|
|
config: reddit
|
|
split: test
|
|
metrics:
|
|
- type: exact_match
|
|
value: 69.305
|
|
name: Exact Match
|
|
- type: f1
|
|
value: 82.405
|
|
name: F1
|
|
---
|
|
|
|
# bert-large-uncased-whole-word-masking-squad2
|
|
|
|
This is a berta-large model, fine-tuned using the SQuAD2.0 dataset for the task of question answering.
|
|
|
|
## Overview
|
|
**Language model:** bert-large
|
|
**Language:** English
|
|
**Downstream-task:** Extractive QA
|
|
**Training data:** SQuAD 2.0
|
|
**Eval data:** SQuAD 2.0
|
|
**Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system)
|
|
|
|
## Usage
|
|
|
|
### In Haystack
|
|
Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/):
|
|
```python
|
|
reader = FARMReader(model_name_or_path="vicky4s4s/deepsets-bert-large-uncased-whole-word-masking-squad2")
|
|
# or
|
|
reader = TransformersReader(model_name_or_path="FILL",tokenizer="vicky4s4s/deepsets-bert-large-uncased-whole-word-masking-squad2")
|
|
```
|
|
|
|
### In Transformers
|
|
```python
|
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
|
|
|
model_name = "vicky4s4s/deepsets-bert-large-uncased-whole-word-masking-squad2"
|
|
|
|
# a) Get predictions
|
|
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
|
QA_input = {
|
|
'question': 'Why is model conversion important?',
|
|
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
|
|
}
|
|
res = nlp(QA_input)
|
|
|
|
# b) Load model & tokenizer
|
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
```
|
|
|
|
## About us
|
|
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
|
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
|
|
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
|
|
</div>
|
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
|
|
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
|
|
</div>
|
|
</div>
|
|
|
|
[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.
|
|
|
|
|
|
Some of our other work:
|
|
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2)
|
|
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
|
|
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
|
|
|
|
## Get in touch and join the Haystack community
|
|
|
|
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>.
|
|
|
|
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
|
|
|
|
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
|
|
|
|
By the way: [we're hiring!](http://www.deepset.ai/jobs) |