File size: 2,297 Bytes
c8002d3 f892ab0 c8002d3 f892ab0 c8002d3 f892ab0 c8002d3 f892ab0 c8002d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: AI_Chaperone
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# AI_Chaperone
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4868
- Rouge1: 0.1544
- Rouge2: 0.0388
- Rougel: 0.1494
- Rougelsum: 0.1493
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| No log | 1.0 | 375 | 0.8740 | 0.1454 | 0.0294 | 0.1416 | 0.1420 |
| 1.2229 | 2.0 | 750 | 0.8700 | 0.1572 | 0.0445 | 0.1526 | 0.1533 |
| 0.6201 | 3.0 | 1125 | 0.9088 | 0.1639 | 0.0461 | 0.1616 | 0.1606 |
| 0.4623 | 4.0 | 1500 | 0.9650 | 0.1581 | 0.0457 | 0.1533 | 0.1537 |
| 0.4623 | 5.0 | 1875 | 1.0441 | 0.1487 | 0.0332 | 0.1436 | 0.1437 |
| 0.3399 | 6.0 | 2250 | 1.1880 | 0.1581 | 0.0436 | 0.1528 | 0.1533 |
| 0.2692 | 7.0 | 2625 | 1.2633 | 0.1582 | 0.0423 | 0.1539 | 0.1547 |
| 0.2233 | 8.0 | 3000 | 1.3449 | 0.1624 | 0.0409 | 0.1590 | 0.1593 |
| 0.2233 | 9.0 | 3375 | 1.4225 | 0.1555 | 0.0401 | 0.1513 | 0.1507 |
| 0.183 | 10.0 | 3750 | 1.4868 | 0.1544 | 0.0388 | 0.1494 | 0.1493 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|