|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: AI_Chaperone |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# AI_Chaperone |
|
|
|
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7199 |
|
- Rouge1: 0.5828 |
|
- Rouge2: 0.2796 |
|
- Rougel: 0.5828 |
|
- Rougelsum: 0.5828 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| No log | 1.0 | 2 | 12.8104 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| No log | 2.0 | 4 | 7.4162 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| No log | 3.0 | 6 | 4.6275 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| No log | 4.0 | 8 | 4.2136 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| No log | 5.0 | 10 | 3.7987 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| No log | 6.0 | 12 | 3.4665 | 0.0513 | 0.0 | 0.0256 | 0.0513 | |
|
| No log | 7.0 | 14 | 3.1709 | 0.1846 | 0.0 | 0.1590 | 0.1846 | |
|
| No log | 8.0 | 16 | 2.8300 | 0.1846 | 0.0 | 0.1590 | 0.1846 | |
|
| No log | 9.0 | 18 | 2.5395 | 0.3513 | 0.0 | 0.3256 | 0.3513 | |
|
| No log | 10.0 | 20 | 2.3414 | 0.3256 | 0.0 | 0.3256 | 0.3256 | |
|
| No log | 11.0 | 22 | 2.1369 | 0.3256 | 0.0 | 0.3256 | 0.3256 | |
|
| No log | 12.0 | 24 | 1.9783 | 0.3256 | 0.0 | 0.3256 | 0.3256 | |
|
| No log | 13.0 | 26 | 1.7889 | 0.3256 | 0.0 | 0.3256 | 0.3256 | |
|
| No log | 14.0 | 28 | 1.5654 | 0.3513 | 0.0 | 0.3256 | 0.3513 | |
|
| No log | 15.0 | 30 | 1.3210 | 0.3317 | 0.0 | 0.3317 | 0.3317 | |
|
| No log | 16.0 | 32 | 1.0739 | 0.5828 | 0.2796 | 0.5828 | 0.5828 | |
|
| No log | 17.0 | 34 | 0.8915 | 0.5828 | 0.2796 | 0.5828 | 0.5828 | |
|
| No log | 18.0 | 36 | 0.7844 | 0.5828 | 0.2796 | 0.5828 | 0.5828 | |
|
| No log | 19.0 | 38 | 0.7356 | 0.5828 | 0.2796 | 0.5828 | 0.5828 | |
|
| No log | 20.0 | 40 | 0.7199 | 0.5828 | 0.2796 | 0.5828 | 0.5828 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|