File size: 6,553 Bytes
69720b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
---
license: other
tags:
- axolotl
- finetune
- qlora
base_model: openchat/openchat-3.5-0106
datasets:
- hendrycks/competition_math
- allenai/ai2_arc
- camel-ai/physics
- camel-ai/chemistry
- camel-ai/biology
- camel-ai/math
- STEM-AI-mtl/Electrical-engineering
- openbookqa
- piqa
- metaeval/reclor
- mandyyyyii/scibench
- derek-thomas/ScienceQA
- sciq
- TIGER-Lab/ScienceEval
---
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/aimTTdmut59aZxOWQlkcC.jpeg)
# π¬π©βπ¬ Newton-7B
This model is a fine-tuned version of [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) on datasets related to science.
This model is fine-tuned using [QLoRa](https://arxiv.org/abs/2305.14314) and [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).
This model's training was sponsored by [sablo.ai](https://sablo.ai).
<details><summary>See axolotl config</summary>
axolotl version: `0.3.0`
```yaml
base_model: openchat/openchat-3.5-0106
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: merged_all.json
type:
field_instruction: instruction
field_output: output
format: "GPT4 Correct User: {instruction}<|end_of_turn|>GPT4 Correct Assistant:"
no_input_format: "GPT4 Correct User: {instruction}<|end_of_turn|>GPT4 Correct Assistant:"
dataset_prepared_path: last_run_prepared
val_set_size: 0.01 # not sure
output_dir: ./newton
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
lora_r: 128
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: huggingface
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: Weyaxi/newton-lora
save_safetensors: true
# change #
gradient_accumulation_steps: 12
micro_batch_size: 6
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
# change #
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10 # not sure
saves_per_epoch: 2
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
debug:
deepspeed:
weight_decay: 0.1 # not sure
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
tokens:
- "<|end_of_turn|>"
- "<|pad_0|>"
```
</details><br>
# π Datasets
You can find the dataset I used and the work I am doing with this datasets here:
https://huggingface.co/datasets/Weyaxi/sci-datasets
Following datasets were used in this model:
- π [MATH](https://huggingface.co/datasets/hendrycks/competition_math)
- π§ [ARC](https://huggingface.co/datasets/allenai/ai2_arc) (Note: Only **train** part)
- 𧲠[camel-ai/physics](https://huggingface.co/datasets/camel-ai/physics)
- βοΈ [camel-ai/chemistry](https://huggingface.co/datasets/camel-ai/chemistry)
- π¦ [camel-ai/biology](https://huggingface.co/datasets/camel-ai/biology)
- π [camel-ai/math](https://huggingface.co/datasets/camel-ai/math)
- β‘ [STEM-AI-mtl/Electrical-engineering](https://huggingface.co/datasets/STEM-AI-mtl/Electrical-engineering)
- π [openbookqa](https://huggingface.co/datasets/openbookqa)
- π§ [piqa](https://huggingface.co/datasets/piqa)
- π¨ [reclor](https://huggingface.co/datasets/metaeval/reclor)
- π¬ [scibench](https://github.com/mandyyyyii/scibench)
- π§ͺ [ScienceQA](https://huggingface.co/datasets/derek-thomas/ScienceQA)
- 𧬠[sciq](https://huggingface.co/datasets/sciq)
- π [ScienceEval](https://huggingface.co/datasets/TIGER-Lab/ScienceEval)
## π οΈ Multiple Choice Question & Answer Datasets Conversion Progress
I used [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) to generate a reasonable and logical answer by providing it with the question and the answer key.
I used the [Together AI](https://www.together.ai) API for this task.
The following datasets are converted using this method:
- π§ [ARC](https://huggingface.co/datasets/allenai/ai2_arc) (Note: Only **train** part)
- π [openbookqa](https://huggingface.co/datasets/openbookqa)
- π¨ [reclor](https://huggingface.co/datasets/metaeval/reclor)
- 𧬠[sciq](https://huggingface.co/datasets/sciq)
# π¬ Prompt Template
You can use this prompt template while using the model:
### GPT4 Correct [(Openchat)](https://huggingface.co/openchat/openchat-3.5-0106#conversation-templates)
```
GPT4 Correct User: {user}<|end_of_turn|>GPT4 Correct Assistant: {asistant}<|end_of_turn|>GPT4 Correct User: {user}<|end_of_turn|>GPT4 Correct Assistant:
```
You can also utilize the chat template method from the tokenizer config like here:
```python
messages = [
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi"},
{"role": "user", "content": "How are you today?"}
]
tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
```
# π€ Acknowledgments
Thanks to [openchat](https://huggingface.co/openchat) team for fine-tuning an excellent model that I used as a base model.
Thanks to [@jondurbin](https://huggingface.co/jondurbin) for reformatting codes for some datasets: [bagel/data_sources](https://github.com/jondurbin/bagel/tree/main/bagel/data_sources)
Thanks to [Together AI](https://www.together.ai) for providing everyone with free credits, which I used to generate a dataset in multiple choice to explanations format.
Thanks to [Tim Dettmers](https://huggingface.co/timdettmers) for his excellent [QLoRA](https://arxiv.org/abs/2305.14314) work.
Thanks to all the dataset authors mentioned in the datasets section.
Thanks to [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for making the repository I used to make this model.
Overall, thanks to all of the open soure AI community! π
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
If you would like to support me:
[β Buy Me a Coffee](https://www.buymeacoffee.com/weyaxi) |