LoneStriker
commited on
Commit
•
f92143d
1
Parent(s):
e90ac2b
Upload folder using huggingface_hub
Browse files- README.md +86 -0
- config.json +26 -0
- generation_config.json +6 -0
- model.safetensors.index.json +46 -0
- output.safetensors +3 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +42 -0
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
datasets:
|
6 |
+
- nampdn-ai/tiny-textbooks
|
7 |
+
---
|
8 |
+
|
9 |
+
# Nuclues 1B Alpha1
|
10 |
+
|
11 |
+
<p align="center">
|
12 |
+
<img src="https://github.com/prp-e/nucleus/raw/main/nucleus-logo.png" width=256 height=256>
|
13 |
+
</p>
|
14 |
+
|
15 |
+
## What is Nucleus?
|
16 |
+
|
17 |
+
Nucleus is a small language model based on Mistral (actually, the trimmed untrained version you can find [here](https://huggingface.co/lmlab/lmlab-mistral-1b-untrained)) and trained in different steps. First, we've pretrained it on TinyStories dataset, then [TinyTextBooks](https://huggingface.co/datasets/nampdn-ai/tiny-textbooks) to make it a more specific model. This model is just a _proof of concept_ at this point, but showed good promises in early tests. So with proper training, can be a good product over time!
|
18 |
+
|
19 |
+
## Inference
|
20 |
+
|
21 |
+
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/prp-e/nucleus/blob/main/nucleus_1b_inference.ipynb)
|
22 |
+
|
23 |
+
First you need to install `transformers` and `accelerate` libraries in order to run this model. Then, you basically have to run the following code:
|
24 |
+
|
25 |
+
```python
|
26 |
+
|
27 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
28 |
+
import torch
|
29 |
+
|
30 |
+
model_name_or_id = "NucleusOrg/Nucleus-1B-alpha-1"
|
31 |
+
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_id, torch_dtype=torch.float16, device_map="cuda")
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_id)
|
34 |
+
|
35 |
+
prompt = "### Lesson: Python Programming 101\n### Introduction\n"
|
36 |
+
|
37 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
38 |
+
|
39 |
+
generation_config = GenerationConfig(
|
40 |
+
do_sample=True,
|
41 |
+
top_k=1,
|
42 |
+
temperature=0.9,
|
43 |
+
max_new_tokens=500,
|
44 |
+
repetition_penalty=1.5,
|
45 |
+
pad_token_id=tokenizer.eos_token_id
|
46 |
+
)
|
47 |
+
|
48 |
+
outputs = model.generate(**inputs, generation_config=generation_config)
|
49 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
50 |
+
|
51 |
+
```
|
52 |
+
|
53 |
+
__Prompt Format__: This model does not have a specific prompt format, but the best results could be achieved with a _textbook_ type of format like:
|
54 |
+
|
55 |
+
```
|
56 |
+
### Chapter 1: Elon Musk and Iron Man
|
57 |
+
Elon met Tony at a Cafe in Monaco, then they had a conversation about
|
58 |
+
```
|
59 |
+
|
60 |
+
You also can try something like this:
|
61 |
+
|
62 |
+
```
|
63 |
+
Question: Who are you?
|
64 |
+
Answer:
|
65 |
+
```
|
66 |
+
|
67 |
+
But since the model isn't made for chat/question answering, the result won't be good enough.
|
68 |
+
|
69 |
+
__Repetition Penalty__: Since most of these models like to repeat themselves, just keep that number there. You can increase or decrease it based on your liking,but keep in mind that a number lower than 1 makes the model _super repetitive_.
|
70 |
+
|
71 |
+
## Known Issues
|
72 |
+
|
73 |
+
* Since we only had 420k rows of data, a lot of information are missing on this model. Since mentioned earlier in this very model card, it's a _proof of concept_ model.
|
74 |
+
* You probably may test it with coding. Let's say that the model is terrible at coding. We may release a coding optimized model as soon as possible.
|
75 |
+
|
76 |
+
## Our Team
|
77 |
+
|
78 |
+
* Muhammadreza Haghiri ([X (formerly Twitter)](https://twitter.com/haghiri_ai) - [Website](https://haghiri75.com/en) - [Github](https://github.com/prp-e) - [LinkedIn](https://www.linkedin.com/in/muhammadreza-haghiri-1761325b))
|
79 |
+
* Mahi Mohrechi ([Website](https://mohrechi-portfolio.vercel.app/) - [Github](https://github.com/f-mohrechi) - [LinkedIn](https://www.linkedin.com/in/faeze-mohrechi/))
|
80 |
+
|
81 |
+
## Special Thanks
|
82 |
+
|
83 |
+
* LMLabs for providing 1B untrained model.
|
84 |
+
* Mistral Team for providing the best open source base model ever.
|
85 |
+
* _Sina Rashidi_, who translated Alpaca dataset to Persian.
|
86 |
+
* [Jupyto](https://jupyto.com) team for providing our infrastructure.
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/jupyter/Nucleus-1B-alpha-1",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 4,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_theta": 10000.0,
|
20 |
+
"sliding_window": 4096,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "float16",
|
23 |
+
"transformers_version": "4.36.2",
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 32000
|
26 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.36.2"
|
6 |
+
}
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 2269192192
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.2.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
27 |
+
"model.layers.2.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
28 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
29 |
+
"model.layers.2.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
30 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
31 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
32 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
33 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
34 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
35 |
+
"model.layers.3.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
36 |
+
"model.layers.3.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
37 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
40 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
45 |
+
}
|
46 |
+
}
|
output.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24307c16301af8031c1736a01abcd5fd1fa4ce623c0f3cff9e572b9ac95ab21d
|
3 |
+
size 1020680752
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": true,
|
35 |
+
"model_max_length": 1000000000000000019884624838656,
|
36 |
+
"pad_token": null,
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"spaces_between_special_tokens": false,
|
39 |
+
"tokenizer_class": "LlamaTokenizer",
|
40 |
+
"unk_token": "<unk>",
|
41 |
+
"use_default_system_prompt": true
|
42 |
+
}
|